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Point-LIO: Robust High-Bandwidth Light Detection and

Ranging Inertial Odometry

Dongjiao He,* Wei Xu, Nan Chen, Fanze Kong, Chongjian Yuan, and Fu Zhang

Herein, point light detection and ranging inertial odometry (LIO) is presented: a
robust and high-bandwidth light detection and ranging (LiDAR) inertial odometry
with the capability to estimate extremely aggressive robotic motions. Point-LIO
has two key novelties. The first one is a point-by-point LIO framework that updates
the state at each LiDAR point measurement. This framework allows an extremely
high-frequency odometry output, significantly increases the odometry bandwidth,
and fundamentally removes the artificial in-frame motion distortion. The second
one is a stochastic process-augmented kinematic model which models the
IMU measurement as an output. This new modeling method enables accurate
localization and reliable mapping for aggressive motions even with inertial
measurement unit (IMU) measurements saturated in the middle of the motion.
Various real-world experiments are conducted for performance evaluation.
Overall, Point-LIO is capable to provide accurate, high-frequency odometry
(4-8 kHz) and reliable mapping under severe vibrations and aggressive motions
with high angular velocity (75 rad s ') beyond the IMU measuring ranges.
Furthermore, an exhaustive benchmark comparison is conducted. Point-LIO
achieves consistently comparable accuracy and time consumption. Finally, two
example applications of Point-LIO are demonstrated, one is a racing drone and the
other is a self-rotating unmanned aerial vehicle, both have aggressive motions.

and mass production of lightweight, cost-
efficient, and high-performance LiDAR sen-
sors, with the potential to benefit a range
of existing and emerging applications such
as autonomous navigation!'! and object
detection.['>"?!

A fundamental requirement of LiDAR
sensors applied in navigation tasks is to
provide accurate position estimations for
robot control and consistent and high-rate
mappings for timely perception of the
environment. By measuring points at an
extremely high rate (e.g., millions per
second), LiDAR sensors could enable con-
siderably high-rate odometry and mapping,
which allows the tracking of extremely
high-speed motions. However, existing
approaches are all based on a frame archi-
tecture similar to vision-based methods,
where the points in a frame are processed
periodically at a certain frame rate (e.g.,
10 Hz). However, in reality, the LiDAR
points are sampled sequentially at different

1. Introduction

Over the past decades, due to the direct, dense, active, and accu-
rate measurements of depth, 3D light detection and ranging
(LiDAR) sensors have been playing an increasingly important role
in autonomous applications, such as view-based simultaneous local-
ization and mapping (SLAM),? robotic exploration and inspec-
tion,®* and autonomous driving.”® Recent developments®”
in LiDAR technologies have enabled the commercialization
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time instants; accumulating these points

into a frame will introduce artificial motion

distortion and adversely affect the mapping
result and odometry accuracy. The low frame rate also increases
latency in the odometry and limits the attainable bandwidth,
where the odometry bandwidth is defined in analogy to the band-
width of a dynamic system, which is the frequency where the
system gain drops below 0.707. An odometry bandwidth repre-
sents how fast a motion could be such that the odometry can
estimate satisfactorily.

In this work, we address these issues by two key novel
techniques: point-by-point state update and stochastic-process-
augmented kinematic model. More specifically, our contributions
are as follows: 1) We propose a point-wise LiDAR-inertial odom-
etry (LIO) framework, which fuses a LIDAR point at its actual sam-
pling time without accumulating into a frame. The elimination of
points accumulation removes the in-frame motion distortion and
allows high odometry output and mapping update at nearly the
point sampling rate, which further enables the system to track
very fast motions; 2) To further advance the system bandwidth
beyond the inertial measurement unit (IMU) measuring range,
we use a stochastic process model™! to model the IMU measure-
ments. Then, we augment this model into the system kinematics
and treat the IMU measurements as system output. The stochas-
tic process-augmented kinematic model allows the smooth esti-
mation of system state, including angular velocity and linear
acceleration, even when IMU saturates; 3) We integrate these
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two key techniques into a full tightly coupled LIO system, termed
as Point-LIO. The system uses an on-manifold extended Kalman
filter (EKF) to update the system state by fusing each LiDAR point
or IMU data at its respective sampling time. By exploiting the sys-
tem sparsity and linearity, the developed system achieves real-
time state estimation even on low-power Advanced RISC (reduced
instruction set computer) Machines (ARM)-based computer
onboard a microaerial vehicle; and 4) The developed system is
tested in various challenging real-world data collected by an
emerging solid-state LiDAR with very small FoV. The results
show the ability of Point-LIO on motion distortion compensation,
high odometry output rate (4-8kHz), and high bandwidth
(>150 Hz). The system is also able to estimate states under
extremely aggressive motions (of angular velocity more than
75rads™ ') with saturated IMU measurements after the initial
stage. Furthermore, an exhaustive benchmark comparison on
12 sequences from various open LiDAR datasets shows that
Point-LIO achieves consistently comparable accuracy and efh-
ciency to other counterparts while costing fewer computation
resources. Real-world applications on actual unmanned aerial
vehicles (UAVs) are finally demonstrated.

The remaining article is organized as follows. In Section 2, we
discuss relevant research works. We give an overview of the com-
plete system pipeline in Section 3. Section 4 presents the system
formulation, an EKF-based state estimator, and summarizes the
algorithm. The evaluations of the system are presented in
Section 5 and benchmark comparison on open datasets is
reported in Section 6. Finally, applications of the system in
real-world UAVs are shown in Section 7, followed by conclusions
in Section 8.

2. Related Works
2.1. LiDAR(-inertial) Odometry

Many recent works on 3D LiDAR odometry and mapping are
based on the LiDAR-odometry and mapping (LOAM) struc-
ture,!*! where raw LiDAR points are accumulated into a frame
(also called a scan) to extract feature points (e.g., edge and plane).
The extracted feature points are then registered to the previous
scan to produce an odometry output at the scan rate (i.e., 10 Hz),
and a few recent scans are accumulated into a small submap
which is finally registered and merged to the global map at a
lower rate (i.e., 1 Hz) to refine the LiDAR pose with respect to
the map. The separate structure between scan to scan and
scan to map in LOAM has been adopted in many follow-up
works, such as Lego-LOAM,*® which considers the constraints
arising from the ground during the scan-to-scan match to
improve the odometry accuracy, LINS'”) which fuses the
IMU data with scan registration, and others such as in
refs. [18,19], which focus on the improvements of computation
efficiency or accuracy.

While the separation between scan to scan and scan to map
can significantly alleviate the computation load required for the
odometry, the scan-to-scan registration in odometry often leads
to quick drift accumulation. Moreover, scan-to-scan registration
requires large overlaps between consecutive scans, which may
not be available in small FoV solid-state LiDARs.”” To address
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these problems, direct scan to map (or scan to local map) has been
widely adopted, such as those based on point maps,''*! (G-)
ICP, NDT,* Surfel maps,?>*! or voxel maps.[*”) In particular,
ref. [20] proposes a parallel scan-to-map method to deal with the
small FoV problems of solid-state LiDARs. Ref. [28] fuses the IMU
measurements into the scan-to-map registration in an efficient
iterated Kalman filter framework. A key problem in the scan-to-
map framework is how to maintain the map structure such that
it can incrementally add points from new scans while allowing
efficient queries. To address this problem, ref. [29] proposes an
incremental k-d tree, ikd-Tree, as the map structure. Benefiting
from this efficient incremental mapping structure, the system
FAST-LIO2 is able to perform odometry and mapping in real time
at 10 Hz for spinning LiDARs and 100 Hz for solid-state LiDARs,
even on low-power ARM-based computers.

One major drawback of scan-to-map registration is that the
odometry is estimated at the rate of the scan (or frame), limiting
the odometry output frequency at the frame rate. The limited out-
put frequency will cause a delay in the odometry equal to the scan
duration. Furthermore, the limited state estimation rate will put an
unnecessary upper bound for the odometry bandwidth due to the
Nyquist-Shannon sampling theorem. This problem has been par-
tially addressed in Lola-SLAMP® and LLOL,*" which propose to
slice a scan to multiple subscans and register each to the map once
it is received, achieving an odometry at 160 and 80 Hz, respec-
tively. Compared with these methods (i.e., the scan-to-scan, >~
the scan-to-map,'*'7% and the sub-scan-to-map***"), our pro-
posed system is a point-to-map framework, which registers each
individual point to the map once it is received. This point-to-map
framework allows an odometry at the point sampling rate in theory
and 4-8 kHz in practice. The unprecedented high-frequency state
update reduces the latency down to microseconds while signifi-
cantly increasing the odometry bandwidth.

2.2. Motion Distortion Compensation

As mentioned above, existing works on LiDAR (-inertial) odom-
etry and mapping are almost all based on scans (i.e., frames),
which will suffer from in-frame motion distortion resulting from
the continuous LiDAR motion during a frame. To correct such
distortion, compensation methods are often necessary.
Most efforts assume a constant-velocity motion within the
frame to compensate the motion distortion, such as in
refs. [15,17-19,32-39)]. The constant-velocity motion assumption
is valid when the scan duration is short or the motion is gentle.
But for very aggressive motions where the velocity may change
during a scan, for example, in drone aerobatics, the constant-
velocity method will often cause large drift or even failures in
odometry.

Another popular method for motion compensation is based
on continuous-time trajectory optimization, such as those
based on B-Splines?®**~*% and Gaussian process model.[**=**!
Continuous-time trajectories allow the evaluation of pose at
any time instant and hence can compensate the distortion
of each individual point. However, continuous-time trajectory
optimization is very time-consuming and often implemented
offline.l*#2#+%] Although there are some online implementa-
tions,?**%* the odometry rate is often low (e.g., 10 Hz) to
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ensure real-time optimization. Moreover, they require to
accumulate sufficient points for reliable trajectory parameter
optimization, which introduces considerable odometry latency.
The inherent smoothness of continuous-time trajectories also
prevents the description of highly aggressive motions experi-
enced by the robot.

Leveraging IMU measurements is another effective method
for motion compensation.”>*?! These methods integrate the
LiDAR pose using the IMU data within a frame to undistort
the contained points. Due to the high frequency of IMU meas-
urements (e.g., 200 Hz), the IMU-based motion compensation is
quite effective for usual robot motions and even in fast-rolling
drone maneuvers!®! (up to 1242°s7"). However, the method
is still limited by the IMU frequency and also suffers from
IMU measurement noises and bias estimation errors.

The ad-hoc motion compensation reviewed above is
ultimately due to the frame-based odometry framework in
existing methods. In our system, we fuse each individual
LiDAR point at its true sampling time instead of accumulating
points into a frame. The elimination of frame accumulation
fundamentally removes the motion distortion from the very
beginning, hence suffering from no drawbacks mentioned
earlier.

2.3. Formulation of Inertial Measurements

To fuse IMU measurements with LiDAR point registration, two
mainstream methods are often used, that is, loosely coupled and
tightly coupled. Loosely coupled methods integrate the IMU
measurements to obtain a pose prior estimation and use this prior
estimation as an initial pose for the subsequent scan
registration.">*#*™*) On the other hand, tightly coupled
approaches fuse IMU measurements and LiDAR points in a joint
optimization. Two implementations have been proposed for
tightly coupled approaches: EKF based™”**%! and optimization
based."®*%%3] EKF-based methods!"”*****!) integrate the IMU
measurements in an EKF’s propagation procedure to obtain pose
estimates, which are subsequently fused with the LIDAR meas-
urements in an EKF update step. In contrast, optimization-based
methods preintegrate the IMU measurements to obtain the rela-
tive pose constraints and then fuse this preintegrated relative pose
constraints with point registration errors.!'#°%>%

www.advintellsyst.com

Tightly coupled methods often have higher robustness and
accuracy than loosely-coupled methods. Yet, in all above
tightly-coupled methods, IMU data are used as an input of a kine-
matic model, so it can be propagated in the EKF propagation or
pre-integrated for one frame duration.”* Such EKF propagation
or pre-integration would suffer from saturation problems if the
robot motion exceeds the IMU measuring range. In other
studies,?****5] IMU data is used to provide measurements of
the angular velocity and linear acceleration predicted from the
continuous-time trajectory, based on which the trajectory param-
eters are optimized along with the LiDAR scan registration fac-
tors. Viewing IMU data as measurements of the model output
could naturally deal with IMU saturation caused by aggressive
motions, although this capability is limited by the continuous-
time model as reviewed earlier. Our method is similar to other
studies!*®***>) by viewing IMU data as measurements of the
model output but models the robot motion as a stochastic
process, which is then augmented with the kinematics. Such
a stochastic process-augmented kinematic model allows the
IMU to update the state along with LiDAR points in an EKF
framework. The developed system is able to deal with saturated
IMU measurement in extremely aggressive motions, like
vibration and high-speed motion. To the best of our knowledge,
it has not been demonstrated in any prior work that the
LiDAR-inertial systems could work with saturated IMU
measurements.

3. System Overview

Our design philosophy is to truthfully recognize that 1) the
LiDAR points are sequentially sampled at respective time,
instead of as a frame sampled at the same time, and 2) IMU data
are measurements, instead of the input, of the system. We fuse
these two measurements in an on-manifold EKF framework!>>!
once the respective measurements (each LiDAR point or IMU
data) are received.

The overview of our designed system is shown in Figure 1; the
sequentially sampled LiDAR points and IMU data are both used
to update states at their respective time stamp, leading to an
extremely high-rate odometry output, that is, 4-8 kHz in practice.
In particular, for each LiDAR point received, a corresponding
plane from the map is searched. If the point is matched with
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Figure 1. System overview of Point-LIO. @ indicates information addition.
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a plane fit from the points in the map, a residual is computed to
update the system state using an on-manifold Kalman filter. The
optimized pose finally registers the LiDAR point into global
frame and merges to the map and then proceeds to the next mea-
surement (LiDAR point or IMU data). Otherwise, if the point has
no matched plane, it is directly added to the map by the Kalman
filter-predicted pose. To enable fast plane correspondence search
while admitting new registered points, we use an incremental k-d
tree structure, ikd-Tree, originally developed in FAST-LI02.[*’!
For each IMU measurement, the saturation check for each chan-
nel of the IMU is conducted separately, the channels that have
saturated values would not be used for state update.

4, State Estimation

The state estimation of Point-LIO is a tightly coupled on-
manifold Kalman filter. Here, we briefly explain the essential
formulations and workflow of the filter and refer readers tol>*
for more detailed and theoretical explanations of the on-manifold
Kalman filter.

4.1. Notations

To ease the explanation, we adopt notations as follows.

Symbol meaning Meaning

Xi State x at the k-th measurement sampling time.
X Ground-true value of state x.

X, X Propagated and updated value of state x.

5% Error between ground-true state x

- and its estimation X.

Furthermore, we introduce two encapsulated operations, HH
(“boxplus”) and its inverse H (“boxminus”) defined in ref. [55]
to describe the system on a manifold .# of dimension n and
parameterize the state error in Euclidean space R". Also, these
operations can describe the system state space model in discrete
time more compactly. We refer readers to ref. [55] for more
detailed definitions and derivations; in this article, we are only
concerned with the manifold SO(3) and R"

/H: M<R— M; B:Mx M—R"

SO(3): RHEr=R-Exp(r); R;HR, =ILog(R] -R;)

R™: affb=a+b; agb=a-b>b

where Exp(r) = I + sin(||r])) 5 + (1 — cos(|\r||))“—JZ is the expo-

] (I
nential map on SO(3) and Log is its inverse map. For a com-
pound manifold # = SO(3) x R" that is the Cartesian
product between the two submanifolds .# = SO(3) and R",
we have

NI SR = AR S S I
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4.2. Kinematic Model

We first derive the system model, which consists of a state tran-
sition model and a measurement model.

4.2.1. State Transition Model

Taking the IMU frame (denoted as I) as the body frame and the
first IMU frame as the global frame (denoted as G), the continu-
ous kinematic model is

“R; = °Ry|'w], °p; = v}, v, = “R/fa+ g, g =10
: I

- 2
bg:nbg, ba:nba’ I(i):Wg ( )

a=w,
where SR, p;, and v, represent the IMU attitude, position, and
velocity in the global frame. ©g is the gravity vector in the global
frame. by and b, are random-walk IMU biases driven by Gaussian
noises n, ~N(0,Q;, ) and n, ~ N(0,Qy, ), respectively. The
notation |a| is the skew-symmetric cross product matrix of a € R3.
o and Ta denote the angular velocity and acceleration of IMU in
the body frame, that is, IMU frame. As proposed in ref. [14], a cer-
tain robot motion (the angular velocity @ and linear acceleration
Ta) can always be viewed as a sample of a collection or ensemble of
signals, which enables us to describe, statistically, the robot
motion by a random process. Moreover, as suggested in ref. [14],
since the motion of robotic systems usually possesses certain
smoothness (e.g., due to actuator delay), quick changes in angular
velocities and accelerations are relatively unlikely and a N-th order
integrator random process would often suffice the actual use.
In particularly, we choose first-order integrator models driven
by Gaussian noises w, = N (0, Q,) and w, =~ N (0, Q,) to model
the angular velocity @ and linear acceleration a, respectively.

The continuous model (2) is then discretized at each measure-
ment step k. Denote At, the current measurement interval,
which is the time difference between the previous measurement
(an IMU data or LiDAR point) and the current measurement (an
IMU data or LiDAR point). The continuous model (2) is discre-
tized by assuming the input holds constant for the interval At,
leading to

Xp11 = X Ea (Atkf(xk,wk)) (3)

where the manifold ., function f; state x, and the process noise
w are defined as

M 2 S0(3) x R, dim(4) = 24
x2[°R; Cp; v bg b, ‘g ‘o
w A [nbg n,, Wg Wa] ~ N(O, Q)
f(x,w) 2 o Sv; SR/a+ °g n,, my, 03 W, w,]eR*

)

where Q = diag(ng, O, Qg Q,) is the covariance matrix of the

a]

process noise w.

4.2.2. Measurement Model

The system has two measurements, a LiDAR point or an
IMU data (consists of angular velocity and acceleration
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measurements). These two measurements are often sampled and
received by the system at different time, so we model them
separately.

Assume that the LiDAR frame coincides with the body
(i-e., IMU) frame or has precalibrated extrinsic, a LiDAR point
"pm, is equal as the true position in the local IMU coordinate
frame Ip%t, which is unknown, contaminated by an additive
Gaussian noise ny, ~ N (0, %y,)

P, =" P} + 1y, (5)

This true point, after projecting to the global frame using the
true (yet unknown) IMU pose T, = (“Ry,, “py, ), should lie exactly
on a local small plane patch in the map (see Figure 2), that is

0= Cul (°T;,('pm, — my,) — ®qi) (6)

hy (%, IPmk , ﬂLk)

where “u, is the normal vector of the corresponding plane and ©g,
is any point lying on the plane. Note that “T;, is contained in the
state vector x;. (6) imposes an implicit measurement model for the
state vector x;.

The IMU measurement consists of angular velocity measure-
ment (‘@) and acceleration measurement (‘ap,)

[Immk :| — |:Imk + bgk +ng, :|

Iy " |'a+b, +n,
~—

my

)
hy(x,np,)
where ng ~ N (0,%,) and n,~N(0,%,) are both
Gaussian noises. Collectively, n; = [nf nl]" ~N(0, %) =
N(0,diag(%,, R,)) is the measurement noise of the IMU.
As shown, the two states ®, b, (and similarly a, b,), which are
separate in the state Equation (2), are now correlated in the angu-
lar velocity measurement @, (or acceleration measurement a).
To sum, the measurement model of the system could be
presented in the following compact form

0 = hy (xi, 'ppy, . np,)

I 8
[Iwmk} :hl(xk:nlk) ®

my

a,

®  Current Point

®  Points in Map |

Figure 2. lllustration of direct registration of LiDAR point to map. ¢q; and
u; refer to a point in the map and the normal vector of the plane in blue.
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4.3, Extended Kalman Filter

A tightly coupled EKF is used for the state estimation of
Point-LIO. The workflow of the EKF is presented in this section.

4.3.1. State Propagation

Assume that we have received measurements up to step k and the
updated state at that time step is X; along with the updated covari-
ance matrix P,. The state propagation from step k to next
measurement step k+ 1 follows directly the state transition
model in Equation (3) by setting w, = 0

R =% H (A f (%, 0)) ©)
And the covariance is propagated as
Py = F PFL +F, OFL (10)

where Q) is the covariance of the process noise wy, and the matri-

ces Fy , F, are computed as
F :a(kaE’A‘kH)
‘ 05xy S5x%,=0, W, =0
_ O(((x EH %) H (At £ (x EH 5%, 0))) B (% HH (At £ (%, 0)))
aéXk
[F, 0 0 0 0 0 IAy O ]
0 I IAt, 0 0 O 0 0
Fy, 0 I 0 0 IAf, 0 Fy
|0 0 0 I 0 0 0 0
10 0 0 o0 1I 0 0 0
0 0O 0 o0 o0 I 0 0
0 0O 0 o0 o0 o I 0
o o 0o 00 0 0 I
Fo= 9% B
‘ owy 5%,=0, W, =0
_ O((xe H (A f (%, W) H (X BB (A (%, 0))))
6wk
[0 0 0 0]
00 00
00 00
T 000
01T 00
00 00
00 IO
0 0 0 Ij

(11)

where x;; is true value of state vector at time step k + 1, and
Fy; = Exp(—'®At), F3g = °R; At

4.3.2. Residual Computation

LiDAR  Measurement: ~ With  the  predicted  pose
GT[M: (GIA{IM,GI‘)IH]) from the Kalman propagation (9), we
project the measured LiDAR point 'p,, =~ to the global frame
“pri1 = °Ry,,"Pum,., + ©Py,., and search its nearest five points
(within 5m distance from ©f,;) in the map organized by
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ikd-Tree. The found nearest-neighboring points are then used to
fit a local small plane patch with normal vector Su;,; and
centroid ©qy,;, as shown in the measurement model (see
Equation (6) and also Figure 2). If the five nearest points do
notlie on the fit plane path (i.e., distance of any point to the plane
is larger than 0.1 m), current measurement of LiDAR point py
is directly merged into the map without residual computation or
state update. Otherwise, if the local plane succeeds to fit, a resid-
ual (ry, ) is calculated according to Equation (8) as

r,,=0- hy (%44, IPmH1 ,0)
=h (%41, Py, 0y) — DL (Resr, 'Prny,, 0 0) (12)
~Hy, 0% + Dy g,

where 8x;, 1 = X1 H%,; with x;,; being the true value of state
vector at time step k+ 1, and

H _ ahL (ik+1 H ox, Ipmk+1 ’ 0)
L — 06X Sx=0
_ [7Gug+1GRI}M LIPmHlJ Cul,, 01><18:| (13)
_ ahL(ﬁkJrl’Ipmk,l’n) _ Gy, T GR
ho ST on o = TRy,

IMU Measurement: For an IMU measurement, we first assess
if any channel of the IMU is saturated by checking the gap
between the current measurement and the rated measuring
range. If the gap is too small, this channel of IMU measurement
is discarded without updating the state. Then, acceleration and
angular velocity measurements from unsaturated IMU channels
are collected to calculate the IMU residual (r, ) according to
Equation (7) (to simplify the notation, we use all six channel
measurements here).

I T
mmk—l
r[k+] = |:I - hl (xk+1’ 0)

am
k+1 A (14)
= hy(Xe41, nzkﬂ) —h;(%1,0)

=H,;, %1 + Dy ny

where 6x;, 1 = X1 H%,1 with x;,; being the true value of state
vector at time step k+ 1, and

Oh, (1 F 6%, 0)
H; . =Ll +615x =[0gxo Toxs Opx3 Tox]
. 5x=0 (15)
D, — 0h, (%1, 1) — T
o = lox
k+1 an neo

To sum, the residual, from either LiDAR point measurement
the (12) or IMU measurement (14), is related to the state x; . ; and
the respective measurement noise by the following relation is

T~ Hpp1 8% + Dy, 0y = N(0, Bpsq) (16)

where for a LiDAR point measurement we have
N =1, ,Hiyy =Hy, . Dy =Dy, By = %1, and for
an IMU measurement, we have 1., = rIM,HkH = HIM,
Dy =Dy, Biy1 = Ry,

Adv. Intell. Syst. 2023, 5, 2200459 2200459 (6 of 20)
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4.3.3. State Update

The propagated state %,,; in (9) and covariance Py,; in (10)
impose a prior Gaussian distribution for the unknown state
X1, as follows

iy =X B = N(O, IA)k-H) (17)

The observation model (16) gives another Gaussian distribu-
tion for &x;,q

Dp iy = g — Hp18%41 = N(0, RBiay)

Z T
Riy1 = D1 1Dy

(18)

Then combining the prior distribution in (17) with the
measurement model from (18) yields the posterior distribution
of the state x;,; (which is represented by 6x;,; equivalently).

i - 2 2
arggm(“rkﬂ ILIk+15Xk+1Hggk+1 +H6Xk+alk+l) (19)
where x| = x"A~x. The optimization problem in (19) is a
standard quadratic programming and the optimal solution
8%p,, can be easily obtained, which is essentially the Kalman
updatel®®

Xy = Kyt

_ T -1
Kiy1 = PropHi S

o (20)
Str1 = Hipa PrgaHp g + Fiia
Pt = (1= Ky Hyg) Py
Then the update of x;,; is
Xpr1 = ’A‘k+1 EH&szrl (21)

The updated state will be used in the next step propagation.
To do so, we need also to estimate the covariance, denoted by
P, of the error between the state estimate X;,; and ground-
truth x, ., defined as x,; HXyy1

X1 %1 = R HO%11) B Xeia
~ (X1 HOXQ, ) B Xigr + T (0%p1 — X0 4) (22)

=0

where J,_; is the projection matrix

Joos = 0((Rer1 FHOX) HXiiq)
k+1 — 05x

— 0
Ox = 6x 1

AGr1) " 03 ]

03><21 I21><21

Aw)'=1I- %—I— (1 - @cot(@)) ﬁulﬁ,@kﬂ =R, BCR,
(23)

and the covariance of (&x;; —&x},,) is the inversion of the
Hessian matrix in (19), which is also the matrix P, in (20).
As a result, the covariance of x,; 5%, according to (22), is

P =T Pl (24)
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Algorithm 1. State Estimation at Step k + 1.

Input:
Last odometry output X, and Py;
A LiDAR point or an IMU measurement;
Output:
New odometry output X1, FH];
Workflow:
1: State propagation from the last time step k to current time step k + 1 via (9)
and (10) to obtain state prediction %, and its covariance Py,;.
2: if A LiDAR point then
3 P = Gﬁ/m,Pmk,. + GFA’IM;
4 if PlaneCorrespondenceExist(Cp,,,) then
5: Compute r,, , H,,,, Dy, via (12), (13);
6 Compute update state X, via (20), (21);
7 Compute update covariance Py via (23), (24);
8 Add the point transformed with the updated state X;,; to the map;

9: else

10: Add point ®p,., into the map;

11:  elseif

12: else if An IMU measurement then

13:  if NoSaturation('@,,, ., 'a, ) then

14: Compute v, H, , D, via (14), (15);

15: Compute update state X,.1 via (20), (21);

16: Compute update covariance Py via (23), (24);
17:  else if

18: else if

The updated state X, along with the covariance matrix Py _4
are used in propagation of the next measurement. The overall
procedure of our state estimation is summarized in Algorithm 1.

4.4. Analysis

In our proposed LIO framework, the state is updated by consum-
ing each LiDAR point at its reception, leading to a point-wise
odometry. This point-wise architecture is completely different
from the existing frame-based LOAM frameworks!'!>~1721:29-31]
and enables an extremely high-rate odometry output that is ide-
ally equal to the point rate of the LiDAR sensor (from hundreds
of thousands to million points per second). The high-rate state
update provides timely correction of the state estimate before
the estimation error increases too large in the forward propaga-
tion step, leading to a potential high-bandwidth odometry that
could even survive in extremely high-speed movements.

Another benefit of the point-wise LIO framework is the fun-
damental removal of in-frame motion distortion. The existing
frame-based framework!!"**7-212931 3ccymulates the sequen-
tially sampled points into a frame and uses to update the state by
assuming the frame is sampled at the same time. Since the
points in a frame are actually sampled at different times, this
accumulation would cause motion distortion for points in a
frame. To compensate such distortion, ad-hoc methods, such
as IMU integration '7/1821:2938:4453,571 = congtant  velocity
alssumption,[15 323738 o1 continuous time trajectory,[26‘45'52]
must be used. In contrast, our point-wise LIO framework
updates the state at each point’s true sampling time, suffering
from no such motion distortion.

The second main difference of our LIO framework is
how we model the IMU measurements. Unlike existing
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methods,”22°%%1 where the IMU measurements are modeled

as the input to a kinematic model, we used a colored stochastic
process to describe a robot’s dynamic behaviors, that is, angular
velocity and acceleration in (2), and modeled the IMU measure-
ments as the model output (7). Modeling the IMU measure-
ments as the output provides an elegant way to cope with
saturated IMU measurements, which allows the estimation of
motion beyond the IMU measuring range.

In our system, we adopted an EKF, instead of an iterated
Kalman filter used in frame-based methods such as FAST-
L1I02! and LINS.'” This is because for the LiDAR measure-
ment, the update rate is very high, so we do not need to iterate
the state update exhaustively at each time step, while for IMU
measurement, the measurement Equation (7) is essentially lin-
ear. The elimination of iteration can effectively lower the time on
state update. Moreover, since the state is updated by the LiDAR
measurements at a point-by-point base, the measurement model
of LiDAR points is of 1D, as shown in Equation (6). The low-
dimension measurement equation along with the great sparsity
(e.g., Fy,, Fy, in (11), Hy_, in (13) and H,_, in (15)) in the system
can also effectively lower the computation time.

5. Evaluation

In this section, we evaluate the performance of our developed
system in three aspects: 1) removal of motion distortion; 2) high
odometry frequency with high bandwidth; and 3) state estima-
tion with saturated IMU measurements in the middle.

5.1. Implementation

The proposed Point-LIO is implemented in C++ and Robots
Operating System (ROS). The EKF is implemented based on
the IKFoM toolbox developed in our previous work.>>! We used
the incremental k-d tree, ikd-Tree, developed in FAST-LIO21%)
as our mapping structure with its default parameters: local map
size L = 2000 m, spatial downsample resolution [ = 0.25m, the
rebalancing thresholds of ikd-Tree are ay,,; = 0.6, agq = 0.5, and
the subtree size threshold for parallel rebuilding (in a second
thread) is N, = 1500.

Although our system is designed to perform state estimate
after each LiDAR point reception, in practice, limited by the avail-
able drivers provided by LiDAR manufacturers, LIDAR points are
packaged after accumulating a complete scan and then sent to the
LIO systems. To cater for this practical limitation, Point-LIO sorts
all LiDAR points and IMU data contained in a received package
according to their respective timestamps. Then, the sorted data
are processed one by one by Point-LIO.

In all the evaluations, we compare Point-LIO to a state-of-the-
art frame-based odometry, FAST-LIO2.?°! All the experiment
results for FAST-LIO2 are collected using the public version
of FAST-LIO2 with its default parameter values (which are essen-
tially also the values of our parameters as detailed earlier). Since
FAST-LIO2 performs a spatial downsampling with resolution 0.3
for each received LiDAR scan, for a fair comparison, we also per-
form such spatial downsampling in Point-LIO before the data
sorting and point-by-point update.
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In addition, to study the effect of point-by-point update, we
provide a system that only integrates this scheme but not applies
the colored stochastic model as an ablation study. The ablation
study system is the same as FAST-LIO2, which models the IMU
measurements as the input to the system kinematic model, but
differs in that the each individual LiDAR point in a scan is used
to update the system sequentially as our proposed system does.
This leads to a state update frequency similar to ours. In the fol-
lowing sections, we denote our developed system Point-LIO as
“Point-LIO” and the above ablation-study system as “Point-
LIO-input” to distinguish the role of IMU measurements in
the two systems.

5.2. Platforms

To collect real-world data, we develop a sensor suite, shown in
Figure 3a, which consists of a solid-state 3D LiDAR, Livox
Avia, a first-person-view (FPV) camera, and five Vicon markers
for ground-truth measurement. With a 70.4° (horizontal) x 77.2°
(vertical) circular FoV and an unconventional nonrepetitive scan-
ning pattern, the Livox Avia LiDAR produces 230 000 Hz point
measurements and a built-in IMU (model BMI088) producing
200 Hz IMU data. The points and IMU data are packaged at a
frequency adjustable from 10 to 100 Hz. To produce different
types of motion, three different platforms are constructed to
carry the sensor suite, including a robot car (see Figure 3b),
the RoboMaster 2019 AI developed by DJI Shenzhen, a rotating
platform driven by a step motor (see Figure 3c), Nimotion
STM4260A, and a pendulum (see Figure 3d).

5.3. Resolving Motion Distortion

To verify the effectiveness of the proposed point-by-point update
scheme in addressing motion distortion, we collect some sequen-
ces using the robot car shown in Figure 3b. Three different
scenes are tested, that is, the Belcher Bay Park (a unstructured
scene), the Centennial Small Square of HKU (a semistructured
scene), and a corridor in the Haking Wong building of HKU
(@ structured scene). The three sequences are denoted as
“Park”, “Square”, and “Corridor”, respectively. In all sequences,
the robot car returns to the starting point, which enables the drift
computation. The LiDAR package frequency is 10 Hz.

One challenge of this experiment is the strong vibration when
the robot car moves on the ground. Since the sensor suite is

www.advintellsyst.com

attached to the chassis without any vibration absorber, the
vibration will directly pass to the sensor and cause severe jerky
motions, as indicated by the built-in IMU data shown in Figure 4.
When the robot car is stationary in the beginning, the MU meas-
urements are stably small. As the car starts moving, the measure-
ment of IMU changes rapidly.

5.3.1. Mapping Results

The mapping results of Park, Square, and Corridor are shown in
Figure 5, 6, and 7 respectively. In each figure, we first present a
global view of the final mapping results (i.e., subfigure (a)) and
then focus on certain local areas (sub-figure (b)) containing large
planes (e.g., a wall). We investigate the consistency of points on
the wall (sub-figure (c)), from which we can compare the map-
ping accuracy of FAST-LIO2 (i.e., (b1), (c1)), Point-LIO-input
(i-e., (b2), (c2)), and Point-LIO (i.e., (b3), (c3)). Finally, to show
the in-frame motion distortion, points of one scan (accumulation
over one scan period 0.1s) in the above-selected local areas
are shown (sub-figure (d)) together with the further zoom-in
(sub-figure (e)) for FAST-LIO2 (i.e., (d1), (el)), Point-LIO-input
(i-e., (d2), (e2)), and Point-LIO (i.e., (d3), (e3)), where the red
points refer to registered LiDAR points in the current scan,
and the white points are map results accumulated up to the cur-
rent scan.

As shown in the sub-figures (c) of Figure 5, 6, and 7, the over-
all map of FAST-LIO2 (cl) is obviously thicker than the
Point-LIO-input (c2), and Point-LIO (c3) produces a further thin-
ner wall than the Point-LIO-input. The reason for this phenome-
non lies in the in-frame motion compensation in each individual
scan, as shown in subfigure (e) of Figure 5, 6, and 7. As shown,
all red points around the selected wall are supposed to belong to
the same plane, but they actually scatter off the wall for FAST-
LIO2 (el) due to the in-frame motion distortion. This in-frame
distortion phenomenon for the Point-LIO-input and Point-LIO is
much alleviated ((e2) and (e3)).

FAST-LIO2 uses a backward propagation based on IMU meas-
urements to project all the points of a scan to the scan-end pose.
This process is easily disturbed by the IMU measurement noises,
biases estimation error, and the limited IMU sampling rate.
In particular, caused by the sensor vibration, the acceleration
and angular velocity change in a high rate even within one sam-
ple interval of the IMU, leading to large IMU propagation errors
which assume that the angular velocity and acceleration are

& Stéi)per
Motor

Figure 3. Experimental platforms for evaluations. a) The sensor suite consisting of a Livox Avia LiDAR, a FPV camera, and five Vicon Markers. The sensor
suite is carried by b) a robot car, c) a rotating platform driven by a step motor, and d) a pendulum.
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Figure 4. Measurements of IMU for three robot car sequences, that is,
Park, Square, and Corridor.

constant during one sampling interval. Moreover, the low frame
rate (i.e., 10 Hz) also requires long-time (i.e., 100 ms) IMU

www.advintellsyst.com

propagation, which accumulates pose errors and results in large
in-frame distortions as shown in subfigures (b1) and (c1).

In contrast, Point-LIO fuses the LiDAR point at its true sam-
pling time without any point accumulation, which fundamentally
eliminates the motion distortion, as shown in subfigures (c2) for
the Point-LIO-input and subfigure (c3) for the Point-LIO.
Furthermore, when comparing the Point-LIO-input (c2) with
the Point-LIO (c3) both with the point-by-point update scheme,
the Point-LIO performs slightly better. This is because the Point-
LIO-input still uses the IMU measurements to propagate the
state (although for only one LiDAR point interval), hence still suf-
fering from the IMU measurement noise and bias estimation
errors. In contrast, the Point-LIO uses the filtered but not the
raw data of IMU measurements to propagate the state, which
slightly reduces the motion distortion as observed in (e3). The
video of an example sequence, the Park, is available online
https://youtu.be/0S83xUs42 Uw.

5.3.2. Drift Results

The drifts of FAST-LIO2, Point-LIO-input, and Point-LIO are
summarized in Table 1. Due to the imperfect operation of the

Figure 5. Illustration of motion distortion for the Park sequence. a): Map result of the whole area of Point-LIO; b1-b3): Map results for a local area of

FAST-LIO2, Point-LIO-input and Point-LIO, and their further zoom-in figures c1-c3); d1-d2): In-frame motion distortion of FAST-LIO2, Point-LIO-input

and Point-LIO, and their zoom-ins e1-e3).
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Figure 6. lllustration of motion distortion for the Square sequence. a): Map result of the whole area of Point-LIO; b1-b3): Map results for a local area of
FAST-LIO2, Point-LIO-input and Point-LIO, and their further zoom-in figures c1-c3); d1-d2): In-frame motion distortion of FAST-LIO2, Point-LIO-input

and Point-LIO, and their zoom-ins el—e3).

robot car, the distance between the starting and ending position
is not exactly zero, but less than 10 cm. As shown, all the FAST-
LIO2, Point-LIO-input, and Point-LIO have comparable drifts for
Square and Corridor sequences, while for the Park sequence,
FAST-LIO2 fails to return the starting point. This is because
the Park is an unstructured environment, which makes the effect
of motion distortion on odometry accuracy more evident.

5.4. High Odometry Output Frequency and High Bandwidth

We test the frequency of odometry output of FAST-LIO2, Point-
LIO-input, and Point-LIO on an indoor dataset (denoted as
“Odo”) collected using the rotating platform (see Figure 3c) by
giving quickly varying speed commands to the step motor; the
package rate of LiDAR is 100 Hz in this experiment. Even though
the dataset is collected with LiDAR rate of 100 Hz, the framework
of FAST-LIO?2 is naturally extendable to higher-state update fre-
quency by splitting one frame into multiples (but below the IMU
rate 200 Hz). Thus we divide one LiDAR frame into two for
FAST-LIO2. Figure 8 shows the distribution of the number of
odometry output per second. The output frequency for FAST-
LIO2 is 200 Hz, which is the frame rate. As comparison, output
frequencies for the Point-LIO-input and the Point-LIO are in the
range of 4 and 8 kHz, which are the number of points that pass
the plane correspondence check.

To enable the bandwidth analysis, the above experiment is
reconducted with ground-truth measurements from Vicon
Tracker recorded at the highest frequency 300 Hz. Dividing sys-
tem output (the yaw angle estimated from the odometry) by the
system input (the ground-true yaw angle measured by the Vicon
system), we obtain the magnitude response (dB) of FAST-LIO2,

Adv. Intell. Syst. 2023, 5, 2200459 2200459 (10 of 20)

Point-LIO-input, and Point-LIO, at different input frequencies, as
shown in Figure 9. As can be seen, the magnitude response of
FAST-LIO2 starts dropping when the input frequency is near
100 Hz, suggesting a 100 Hz bandwidth (see Table 2). 100 Hz
is also the highest attainable bandwidth when the odometry out-
put frequency is 200 Hz according to the Nyquist-Shannon sam-
pling theorem. In contrast, both the Point-LIO-input and the
Point-LIO have bandwidth larger than 150 Hz which is beyond
the measuring capability of Vicon system.

5.5. Extremely Aggressive Motion with Saturated IMU
Measurements

While the Point-LIO-input and Point-LIO have comparable per-
formances so far, in this section, we show that the Point-LIO is
able to track extremely aggressive motions even beyond the IMU
measuring ranges. Two types of motion are produced in the
experiments, one is spinning motion (denoted as “Satu-17)
and the other is circling in the space (denoted as “Satu-2”).
Both experiments suffer from IMU saturation after initial stage
caused by either the high spinning rate or the large centrifugal
forces. To the best of our knowledge, no prior SLAM systems
could cope with such aggressive motions or the saturated
IMU measurements.

5.5.1. Spinning Motion
This experiment is conducted using the rotating platform placed

in a cluttered laboratory environment (see Figure 10al-a4).
During the experiment, the sensor suite is rotated by the step
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Figure 7. lllustration of motion distortion for the Corridor sequence. a): Map result of the whole area of Point-LIO; b1-b3): Map results for a local area of

FAST-LIO2, Point-LIO-input and Point-LIO, and their further zoom-in figures c1-c3); d1-d2): In-frame motion distortion of FAST-LIO2, Point-LIO-input

and Point-LIO, and their zoom-ins el—e3).

Table 1. Comparison of odometry drifts (meters).

FAST-LIO2 Point-LIO-input Point-LIO
Park: 1.242 0.064 0.080
Square: 0.041 0.038 0.039
Corridor: 0.047 0.043 0.047

motor under step angular speed commands, which increases
from zero to a peak value step by step and then decreases to zero
at the end. The resultant peak angular velocity is 75rads™'
(in yaw), which far exceeds the IMU measuring range, that is,
35rad s~ . The high angular velocity also causes a peak acceler-
ation around 80ms~? also far beyond the IMU measuring
range, that is, around 30 m s 2. The onboard FPV images shown
in Figure 10cl and c2 give an illustration of the rotation in
process.

The mapping result of Point-LIO is shown in Figure 10b1,
which shows a fairly consistent mapping of the environment,
and the estimated ending position coincides with the starting
position very well as shown in Figure 10b2. The estimated

Adv. Intell. Syst. 2023, 5, 2200459 2200459 (11 of 20)
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Figure 8. Number of output odometry per second of FAST-LIO2 and
Point-LIO-input and Point-LIO.

kinematic states, including rotation in Euler angles and position,
are compared with the ground truth in Figure 11a, where the x
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Figure 9. Bandwidth analysis of FAST-LIO2, Point-LIO-input, and
Point-LIO.

Table 2. Comparison of average frequency of odometry output (Hz) and
bandwidth (Hz).

FAST-LIO2 Point-LIO-input Point-LIO
Output Odo.: 200 6132 6955
Bandwidth: 100 >150 >150

axis is broken into three segments to zoom in the time period
84-85 s. The continuous rapid change of yaw is due to the con-
tinuous rotation driven by the step motor, and the sinusoidal-like
fluctuations in positions are caused by the offset between the
Vicon marker and the step motor shaft. As shown, the estimated
yaw angle can closely track the actual ones in the whole process;
the overall rotation and translation error (in terms of root mean
square deviation [RMSE]) are 4.60° and 0.233 m, respectively.
The slightly large RMSE of translation is mostly caused by the
y-direction, where the constraints in this direction are insuffi-
cient from the beginning. Considering the extreme motions
in the experiment, this translation error is well acceptable.
Another benefit of our Point-LIO is the capability of estimating
angular velocity and acceleration (which are states of our system

www.advintellsyst.com

and can hence be estimated by the Kalman filter) where the IMU
is saturated. The estimation versus the IMU measurements are
plotted in Figure 11b. As shown, during the time period
50-106s, the IMU saturates (z-axis for gyroscope and y-axis
for accelerometer), while our Point-LIO can still give a reasonable
estimate. Outside this region, the estimation from our Point-LIO
is in good agreement with the IMU measurements albeit some
high-frequency components are filtered.

We further challenge Point-LIO by starting it at different
initial angular speeds of the motor. As shown by the map
results in Figure 12 and the RMSE of rotation in Table 3, when
the initial angular velocity is below the IMU saturation value,
thatis, 35 rad s, the Point-LIO is able to survive by constructing
a reasonable map and state estimation. The quality of state
estimation is slightly degraded when compared to the above case
where the sensor starts from a stationary pose. This performance
degradation is reasonable since the fast initial angular speed
causes Point-LIO to build a biased map at the very beginning,
which further misleads the subsequent state estimate. This
also causes the RMSE of rotation to increase with the initial
angular velocity, as shown in Table 3. When the initial angular
velocity is beyond the IMU measuring range, Point-LIO fails due
to the drastic large initial state estimate (e.g., the initial angular
velocity estimate is set to zero while the actual is above
35rads™!).

Finally, as a comparison, we run the FAST-LIO2 and
Point-LIO-input on the same dataset, and the error comparisons
of rotation and position are presented in Figure 13. As shown,
the estimations of FAST-LIO2, Point-LIO-input, and Point-LIO
have comparable rotation error during the first 50s, where
IMU works normally. From time 50 s, where IMU starts saturat-
ing, the estimations of FAST-LIO2 and Point-LIO-input start to
diverge immediately for rotation, and the estimation of position
also starts to drift and then diverge. In conclusion, the FAST-
LIO2 as well as the Point-LIO-input fail to work under saturated
IMU measurements while our proposed Point-LIO can survive if
the saturation does not last from the beginning.

5.5.2. Circling Motion

This experiment is conducted using the pendulum in the same
laboratory environment (see Figure 14d). In this experiment, the

Figure 10. Test environments of the spinning motion experiment and the mapping results of Point-LIO. al—a4): Pictures of environment; b1): Map
results of Point-LIO; c1-c2): Snaps of first-person-view camera during the experiment.
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Figure 11. a) Estimation results of Point-LIO for rotation in Euler angles and position of spinning motion experiment. b) Comparison of angular
velocity and acceleration between estimation of Point-LIO and measurements from IMU. The gray dotted lines indicate the saturation values of

the IMU.

12.56 rad 5!

18.84 rad s’!

Figure 12. Map results of Point-LIO starting with different angular velocities.

Table 3. Rotation RMSE (°) for Point-LIO starting with different angular
velocities (rads™).

Angular velocity 6.28 1256 18.84 2512 3140 3485 37.68
at start [rad s ]

RMSE of rotation [°]: 6.9 9.7 13.6 14.6 16.4 18.7 fail

sensor suite is tied to one end of a rope that swings into a circling
trajectory in the vertical plane (see Figure 14b). This motion
causes an acceleration at the bottom of the circle up to 40 m s72,
which exceeds the IMU measuring range 30 m s ™% FPV images
shown in Figure 14e give an visual illustration of the motion.
More details are shown in a video available online https://you-

tu.be/0S83xUs42Uw.

Adv. Intell. Syst. 2023, 5, 2200459 2200459 (13 of 20)

Qualitatively, Figure 14c1 and c2 shows the mapping results of
our proposed Point-LIO. Since the LiDAR is facing front with a
70.4° x 77.2° circular FoV, only one side of the laboratory is
mapped. The estimated trajectory is shown in Figure 14a, which
is in high agreement with the actual sensor path shown in
Figure 14b.

Quantitatively, the estimated rotation in Euler angles and posi-
tion are compared with ground-truth measured by Vicon in
Figure 15a, where both the Euler angle estimation and the posi-
tion estimation successfully demonstrate the 12 sequential
circles. The RMSEs of the average rotation and translation errors
are 4.42° and 0.0990 m, respectively. Figure 15b shows the esti-
mated angular velocity and acceleration by the Point-LIO versus
the IMU measurements. As shown, the estimations agree with
the IMU measurements pretty well when those dynamic states
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Figure 13. Error comparison of FAST-LIO2, Point-LIO-input, and Point-
LIO, for rotation and position estimations.

are within the IMU measurements. Moreover, our Point-LIO can
give reasonable acceleration estimates even when the IMU sat-
urates. Figure 16 further shows the error comparison among the

www.advintellsyst.com

Point-LIO, the Point-LIO-input, and the frame-based odometry
FAST-LIO2. Similar to the last experiment, our Point-LIO
achieves consistently lower estimation errors than the other
two due to the ability to cope with IMU saturation.

5.6. Real-Time Performance

The average time costs of each step of the Point-LIO-output for
processing one scan of LiDAR points are shown in Figure 17,
which are tested on an intel i7-based micro-UAV onboard
computer, a DJI Manifold 2-C7 with a 1.8 GHz quad-core Intel
7-8550U CPU, and 8 GB RAM. The mapping includes searching
of nearest points and adding of point to the map, which takes up
the largest part of time consumption. Even the system states are
updated at each LiDAR point, the time for EKF filtering including
state propagation and update is less than 10 ms for 10 Hz sequen-
ces and less than 1 ms for 100 Hz sequences.

The average total time consumption for one scan is compared
among FAST-LIO2, Point-LIO-input, and Point-LIO-output in

Figure 14. Test environment of the circling motion experiment and the mapping results of Point-LIO. Trajectory captured by a third-person-view camera;
c1-c2): Map results of Point-LIO; d): Environment picture; e): Snap of the first-person-view camera during the experiment.
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Figure 15. a) Estimation results of Point-LIO for rotation in Euler angles and position of the circling motion experiment. b) Comparison of angular velocity
and acceleration between estimation of Point-LIO and measurements from IMU. The gray dotted lines refer to saturation values of the IMU.
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Figure 17. Time usage in each step of Point-LIO.

Table 4. x indicates that the LIO fails in those sequences. As can
be seen, our Point-LIO, with either the Point-LIO-input (i.e.,
Point-LIO-input) or the output model (i.e., Point-LIO), has time
consumption comparable to FAST-LIO2, and they all achieve
real-time performance, that is, within 100 ms for 10 Hz sequen-
ces and within 10 ms for 100 Hz sequences. Finally, the average
numbers of points processed per second (including those with
and without plane correspondences) over all sequences are
33710, and the average processing time per point is 9 us.

Table 4. Comparison of time consumption (milliseconds) per scan for
Point-LIO and FAST-LIO2.

FAST-LIO2 Point-LIO-input Point-LIO
10 Hz Park: 39.84 32.09 32.94
Square: 21.89 25.20 25.41
Corridor: 28.36 28.76 30.59
100 Hz Odo: 1.18 1.70 1.69
Satu-1: - - 1.92
Satu-2: - - 2.38
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6. Benchmark Results

In this section, we test Point-LIO on various public sequences,
which have more gentle motion without IMU saturation and
compare it with other state-of-the-art LIO methods, including
FAST-L102,*) LILI-OM, 'Y LIO-SAM,*!) and LINS."”) The com-
putation platform for benchmark comparison is the same light-
weight UAV onboard computer as used in FAST-LI02,?*) which
is a DJI Manifold 2-C7 with a 1.8 GHz quad-core Intel i7-8550U
CPU and 8GB RAM; hence, the results for FAST-LIO2,
LILI-OM, LIO-SAM, and LINS can be directly obtained from
the original paper.’” Since Point-LIO uses the same mapping
structure as FAST-LIO2, for a fair comparison, we set the map-
ping parameters of Point-LIO to the default values of FAST-LIO2
used in ref. [29], that is, the local map size L = 1000m, the
LiDAR raw points are directly fed into state estimation after a 1:4
(one out of four LiDAR points) temporal downsampling and spa-
tial downsample resolution ! = 0.5m with rebalancing thresh-
olds of ikd-Tree as a, = 0.6, agq = 0.5, and N, = 1500.
For the EKF part of Point-LIO, the LiDAR measurement noise
of Kalman filter is set as %= 1072 - I (see (18)). These parameter
values are kept the same for all sequences.

We evaluate our method on the same 12 sequences used in
FAST-LIO2,”?% which are drawn from 4 different public datasets,
that is, “lili” from LILI-OM,M “utbm” % “ulhk” ) and
“liosam” from the work LIO-SAM.2Y Among them, “lili” uses
a solid-state 3D LiDAR, Livox Horizon, while the other three
datasets use the spinning LiDARs, that is, Velodyne HDL-32E
LiDAR for “utbm” and “ulhk” and VLP-16 LiDAR for “liosam”.
We refer the readers to ref. [29] for more detailed information
about the dataset and the selected sequences.

6.1. Accuracy Evaluation

Similar to ref. [29], two criteria, the RMSE of average translation
error (for sequences with good ground-true trajectory) and the
end-to-end error (for sequences starting and ending at the same
location), are used for the accuracy evaluation.

6.1.1. RMSE Benchmark

The RMSEs are computed using the same method of the
publication®’ and reported in Table 5. Compared with other
LIO methods, our Point-LIO achieves the best performances
in 4 out of 5 sequences, especially an obvious improvement
on utbm_9, while it has a slightly higher RMSE in liosam_1.
The overall accuracy of our method is on par to (and most cases
better than) the counterparts.

6.1.2. Drift Benchmark

The end-to-end errors are reported in Table 6. The overall trend is
similar to the RMSE benchmark results, that our Point-LIO
achieves the lowest drifts in 5 out of 7 sequences. The result
for sequence lili_8 is worse than LILI-OM and FAST-LIO2, which
is because LILI-OM has tuned parameters for each of their own
sequences “lili”, while parameters of Point-LIO are kept the same
among all the sequences. Since lili_ 8 has a much longer
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Table 5. Comparison of RMSE (meters) for Point-LIO, FAST-LIO2, and
other state-of-art LiDAR-inertial systems on public sequences. The
smallest RMSE for each sequence is indicated in bold text.

utbm_8 utbm_9 utbm_10 ulhk_4 liosam_1
Point-LIO 23.77 26.35 15.70 217 5.24
FAST-LIO2 27.29 51.60 16.80 2.57 4.58
LILI-OM 59.48 782.11 17.59 2.29 18.78
LIO-SAM - - - 3.52 4.75
LINS 48.17 54.35 60.48 3 880.92

Table 6. Comparison of drifts (meters) for Point-LIO, FAST-LIO2, and
other state-of-art LiDAR-inertial systems on public sequences. The
smallest drift for each sequence is indicated in bold text.

lili_6  lili_7  lili_,8  ulhk_5 ulhk_6 liosam_2  liosam_3
Point-LIO <0.1 <0.1 28.64 <0.1 2.30 <0.1 7.85
FAST-LIO2 <01 1.63 17.39 0.39 <0.1 <0.1 9.50
LILI-OM 0.8 4.13 15.6 1.84 7.89 1.95 13.79
LIO-SAM - - - 0.83 2.88 - 8.61
LINS - - - 0.9 6.92 - 29.9

trajectory than the other two “lili” sequences, the drift caused by
inappropriate parameters would accumulate along the following
process and result in more than 10 m drift worse than FAST-
LIO2. Also, Point-LIO shows slightly larger RMSE on sequence
ulhk_6 relative to FAST-LIO2 albeit the margin is very small.

As can be seen from the above benchmark results, Point-LIO
achieves higher accuracy in most sequences while for the rest,
the margin from the best method is not significant.
Considering the various types of LiDARs, environments, and
moving platforms across all datasets and sequences, this effec-
tively shows the accuracy and robustness of our method on
real-world data.

6.2. Processing Time Evaluation

Table 7 shows the processing time of Point-LIO, FAST-LIO2,
LILI-OM, LIO-SAM, and LINS in all the sequences. Both
Point-LIO and the FAST-LIO2 integrate odometry and mapping
together, where the map is updated immediately at each step the
odometry is updated. Therefore, the total time (“Total” presented
in Table 7) counts all possible procedures occurring in the odom-
etry, including point-to-map-matching, state estimation, and
mapping. On the other hand, LILI-OM, LIO-SAM, and LINS
are all based on a separate architecture of odometry (including
feature extraction and rough pose estimation) and mapping
(such as back-end fusion in LILI-OM,™ incremental smoothing
and mapping in LIO-SAM,*"! and map-refining in LINSI'”),
whose average processing time per LiDAR scan is summed
up by those two parts (“Odo”. and “Map”. respectively presented
in Table 7) when ranking the computation time.

As shown, our proposed method and FAST-LIO2 achieve the
least computation time when compared with other methods.

Adv. Intell. Syst. 2023, 5, 2200459 2200459 (16 of 20)
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Table 7. Comparison of time consumption (milliseconds) per scan for
Point-LIO, FAST-LIO2, and other state-of-art LiDAR-inertial systems on
public sequences. The shortest time consumption for each sequence is
indicated in bold text.

Point-LIO  FAST-LIO2 LILI-OM LIO-SAM LINS

Total Total Odo. Map. Odo. Map. Odo. Map.
utbm_8 19.68 22.05 65.28 84.76 - - 37.44 153.92
utbm_9 19.70 25.44 68.94 97.90 - - 38.82 154.06
utbm_10 19.65 22.48 66.10 97.29 - - 33.61 166.12
lili_6 14.19 12.56 68.95 58.46 - - - -
lili_7 1n.77 17.61 40.01 83.71 - - - -
lili_6 10.57 15.31 61.80 79.11 - - - -
ulhk_4 20.54 20.14 52.40 74.80 39.50 95.29 34.72 93.70
ulhk_5 35.71 23.90 53.56 47.68 25.68 127.63 28.01 99.13
ulhk_6 43.01 31.56 64.46 70.43 15.16 164.36 41.54 199.96
liosam_1 10.85 14.77 48.45 84.28 13.47 13539 2413 179.44
liosam_2 24.77 19.77 42.58 99.01 13.09 154.69 20.71 160.66
liosam_3 12.79 16.64 38.42 64.02 11.32 12435 40.47 117.25
Average 20.27 20.19 5591 78.45 19.70 133.62 33.27 147.14

When compared to FAST-LIO2, our method takes less time
on 7 out of 12 sequences. The average computation time of these
two methods is very close. Note that, due to the frame-based
architecture, FAST-LIO2 uses four threads to parallelize the near-
est point search, while our method, due to the point-wise archi-
tecture, has to perform such operations sequentially. Still, our
method takes comparable average computation time, suggesting
fewer use of the computation resources, which could be reserved
for other modules (e.g., planning, control). This computation
efficiency is attributed to the great sparsity of the system and
the elimination of iteration in the Kalman filter, as explained
in Section 4.4.

In summary, Point-LIO has accuracy and computation effi-
ciency comparable to FAST-LIO2, while costing fewer computa-
tion resources. In the meantime, the Point-LIO is significantly
faster than the current state-of-the-art LIO algorithms, that is,
LILI-OM, LIO-SAM, LINS, while achieving highly competitive
or better accuracy.

7. Applications

In this section, we apply our proposed Point-LIO to the state esti-
mation of two UAVs: one is on a racing quadrotor drone shown
in Figure 18a which has a thrust-to-weight ratio up to 5.4. The
high-thrust-weight ratio enables the drone to perform extremely
agile motions. The other UAV is on an agile, single-actuated
aircraft called self-rotating UAV, as shown in Figure 18b.
The propeller blades are attached to the motor shaft through
two passive hinges,®%?! which, by modulating momentary accel-
eration and deceleration on the propeller rotation speed, is able to
produce the roll and pitch moment necessary to stabilize the
UAV’s attitude. Due to the uncompensated moment produced
by the motor, the UAV will produce a high-rate continuous
yaw rotation.
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Figure 18. Platforms for application. a) Racing drone; b) self-rotating UAV.

7.1. Racing Drone

As shown in Figure 18a, the racing drone is mounted with a
Livox Avia LiDAR and a FPV camera. The LiDAR FoV is aligned
to that of the FPV camera, based on which an expert human pilot
manually controls the drone to perform extremely agile flight

www.advintellsyst.com

maneuvers. The flights are conducted above a farmland with veg-
etation, pond, and buildings (see Figure 19b,c). Several aggres-
sive maneuvers are performed during the flight, including
extremely fast rolling flips (see Figure 19el-e3), cliff diving,
and lateral accelerations. During the flip, the angular velocities
reach 59.37rads™', which exceeds the IMU measuring range
35rads™!. Readers can refer to the accompanying video
https://youtu.be/0S83xUs42Uw for better visual illustration of
the experiment.

We conducted two flights and our method succeeded on both
of them. Due to the space limit, we present the results of one
flight only. The mapping results are shown in Figure 19d1-d3;
it is seen that the constructed map is consistent with easily dis-
tinguishable fine structures on the ground, such as trees and
buildings. The estimation of rotation in Euler angles, position,
and velocity are shown in Figure 20a, and the estimation of
the angular velocities versus the IMU measurements are shown

Figure 19. Mapping results of Point-LIO. al-a2): Picture of the UAV in flight; b,c): Environment pictures; d1-d3) Map results of Point-LIO; e1-e3): Snaps

of the first-person-view camera during experiment.

(@)
>
;’ 180 F A i
E’ /~} -\ v /N
g o=~ V’&\ Dl A s TR |
8
iy 180 . [—Roll—Pitch — Yaw
0 5 10 15 20 25 30 35 40
5 a5 . . ‘ : : : P
s o 1
£ -20f N2 |
o 40} ]
a —X—Y—Z
0 5 10 15 20 25 30 35 40
g AN J><\
£ _
z O @ NG LA O/ w= A
S 1o+ .
® R T —X—Y—z
0 5 10 15 20 25 30 35 40

(b)

Angular Velocity (rad/s) Acceleration (mlsz)

0 10 20 30 40 0 10 20 30 40
Time (s) Time (s)
|—IMU —Point-LIO - Saturation line|

Figure 20. a) State estimation of Point-LIO. b) Comparison of angular velocity and acceleration between estimation from Point-LIO and measurements

from IMU. The gray dotted lines indicate saturation values of the IMU.

Adv. Intell. Syst. 2023, 5, 2200459 2200459 (17 of 20)

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

85U8017 SUOWWOD SAIES.D d|geatidde ayy Aq pausonob ake saoliie YO 8sn J0 s3|n. 10y Areid 1 au1|uO 8|1 UO (SUORIPUOD-PUe-SWBH 0D A 1M ALIq 1 BU1|UO//SANY) SUORIPUOD PUe SWiB L 8U1 39S *[7202/60/.2] Uo Arlgi aulluo Ao|IM ‘657002202 AS1e/e00T OT/10p/LI0d" A3 1M Atelq iUt juo//Sdny woiy papeojumod ‘L ‘€202 ‘L9Sr0r9e


http://www.advancedsciencenews.com
http://www.advintellsyst.com

ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

in Figure 20b. From these results, we can see that our method is
able to estimate the drone’s states even with extremely aggressive
motions. As noted, the maximum velocity on one axis reaches
14.63ms™ !, maximum acceleration reaches 30ms™2, and
angular velocity reaches 59 rads™'. Besides the extremely agile
motion, the LiDAR also occasionally faces the sky, which causes
no LIDAR measurements, during maneuvering. Still, our
method is able to estimate the state stably.

7.2. Self-Rotating UAV

Figure 18b presents the self-rotating UAV. As shown in this fig-
ure, the Livox Avia LiDAR is front, leading to a fast FoV change
when the UAV undergoes continuous yaw rotation. We use the
LiDAR built-in IMU and set the measuring range to 17.5rad s/,
while the average yaw rate of the UAV is around 25 rad s™*. The
UAV is also equipped with a low-power, ARM-based computer,
Khadas VIM3 Pro, which has 2.2 GHz quad-core Cortex-A73
CPU and 4 GB RAM. The onboard computer runs our Point-
LIO to estimate the UAV state in real time. The estimated
state is then fed to the flight controller, Pixhawk 4 Mini, to do

www.advintellsyst.com

the real-time control task. Two experiments are conducted using
this UAV, one is an outdoor experiment outside the Haking
Wong building of the University of Hong Kong, as shown in
Figure 21al and a2, and the other is an indoor experiment in
a cluttered laboratory shown in Figure 21b1 and b2.

The real-time mapping results of the two experiments are
shown in Figure 21, i.e., (c) for the outdoor experiment and
(d) for the indoor experiment. It is seen that our method
manages to build maps of both environments without noticeable
mismatches. Figure 22a,b further show the estimation of the
kinematic state (i.e., rotation, position, and velocity), angular
velocity, and acceleration, respectively. The plots are enlarged
during the time interval 53-55's, to better show the estimation
results. As shown, our method can produce stable state
estimate that is in line with the IMU measurements, despite
the IMU saturation in the middle and quick FoV changes caused
by fast spinning. The average processing time per LiDAR
package of our method is 14.63 ms while the package rate is
50 Hz, ensuring real-time performance. This is also confirmed
by the experiments, where the controller is able to perform
stable controlled flight with the state feedback from our method.

Figure 21. Mapping results of Point-LIO. al-a2): Pictures of the UAV during the outdoor experiment; b1-b2): Pictures of the UAV during the indoor
experiment; c): Map results of Point-LIO for the outdoor experiment; d): Map results of Point-LIO for the outdoor experiment.
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8. Conclusion

This article proposes Point-LIO, a robust and high-bandwidth
LIO framework. The framework is based on a novel point-by-
point update scheme, which updates the system state at the true
sampling time of each point without accumulating points into a
frame. The elimination of points accumulation removes the long-
standing in-frame motion distortion and allows high-odometry
output at nearly the point sampling rate (4-8 kHz), which further
enables the system to track very fast motions. To further boost
the system bandwidth beyond the IMU measuring range, a col-
ored stochastic process is augmented into the kinematic model
treating the IMU measurements as system output. The band-
width, robustness, accuracy, and computation efficiency of the
developed system are exhaustively tested in real-world experi-
ments with extremely aggressive motions and public datasets
with diversified LiDAR types, environments, and motion pat-
terns. In all tests, Point-LIO achieves comparable computation
efficiency and odometry accuracy to other state-of-the-art LIO
algorithms while significantly boosting the system bandwidth.

As an odometry, Point-LIO could be used in various autono-
mous tasks, such as trajectory planning, control, and perception,
especially in cases involving very fast ego-motions (e.g., in the
presence of severe vibration and high angular or linear velocity)
or requiring high-rate odometry output and mapping (e.g., for
high-rate feedback control and perception).
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