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Trajectory generation and tracking control for
aggressive tail-sitter flights

Guozheng Lu, Yixi Cai, Nan Chen, Fanze Kong, Yunfan Ren

and Fu Zhang

Abstract
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter
UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAVaerodynamic models,
which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control.
We have found that a tail-sitter is differentially flat with accurate (not simplified) aerodynamic models within the entire
flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This
fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking
control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is
proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free
constraints, and actuator saturation. The planned trajectory of flat output is transformed into state trajectory in real time
with optional consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally
parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-
accuracy trajectory tracking within the whole flight envelope. The proposed algorithms are implemented on our quadrotor
tail-sitter prototype, “Hong Hu,” and their effectiveness are demonstrated through extensive real-world experiments in
both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific
attitude and with speed up to 10 m/s, typical tail-sitter maneuvers (transition, level flight, and loiter) with speed up to 20 m/
s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight, and Cuban Eight) with acceleration up
to 2.5 g. The video demonstration is available at https://youtu.be/2x_bLbVuyrk.
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1. Introduction

A tail-sitter unmanned aerial vehicle (UAV) is a type of
vertical takeoff and landing (VTOL) flying machine that
takes off and lands vertically on its tail while tilts the entire
airframe in a near horizontal attitude for forward flight. Its
hybrid fixed-wing and rotary-wing design combines ad-
vantages of the VTOL capability, aerodynamic efficiency,
and hence extends the power endurance and flight range.
Compared to other hybrid designs of VTOL UAVs, like tilt-
rotors (Carlson, 2014; Ozdemir et al., 2014), tilt-wings
(Çetinsoy et al., 2011), rotor-wing (McKenna, 2007), and
dual-systems (Park, 2014; Gu et al., 2017), tail-sitters have
rotors fixed to the wing and use their thrust in all flight
conditions, leading to a mechanically simple, lightweight,
and efficient airframe configuration, which is particularly
important for small-scale, low-cost, portable UAVs. Such
UAVs hold immense potentials for a wide range of in-
dustrial and civil applications, such as infrastructure in-
spection, geological surveying, environment mapping, and
post-disaster search and rescue. These exciting

opportunities have attracted intensive research interests and
led to the development of a variety of tail-sitter UAV
prototypes, such as the single-propeller configuration
(Frank et al., 2007; Wang et al., 2017b; De Wagter et al.,
2018), the shoulder-mounted twin-engine configuration
(Bapst et al., 2015; Ritz and D’Andrea, 2017; Sun et al.,
2018), and the quadrotor configuration (Oosedo et al., 2013;
Gu et al., 2018).

To accommodate the escalating demand of real-world
applications, tail-sitter UAVs must be able to execute highly
aggressive maneuvers, including forward transition to level
flight, back transition break, and quickly bank turns. The
agile maneuverability is crucial for the UAV to navigate at a
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high-speed through obstacle-dense environments. Unlike
conventional airplanes that fly in open space, tail-sitter
UAVs are subjected to more challenging flight conditions
of fast-varying speed and attitude, asking a holistic design of
the trajectory generation and tracking control, where the
former aims to plan a smooth, dynamically feasible, and
collision-free trajectory and the latter should track the
planned trajectory with small errors.

While the planning and control of multicopter UAVs have
been comprehensively studied by leveraging the differential
flatness property of the systems (Mellinger and Kumar, 2011;
Faessler et al., 2018), thus stimulating a wealth of practical
applications, like flying through narrow gaps (Mellinger et al.,
2012; Falanga et al., 2017; Ren et al., 2023), perching on
structures (Mellinger et al., 2012; Hang et al., 2019), autono-
mous safe navigation (Shen et al., 2011; Zhou et al., 2019;
Zhang et al., 2020), and drone racing (Foehn et al., 2021), the
equivalent techniques for tail-sitter UAVs are relatively un-
derdeveloped. The differential flatness for tail-sitters, which
resolves the full states and inputs of the system from finite flat
outputs and their derivatives, has not been rigorously investi-
gated. A significant hurdle confronting this task lies in the
complex nonlinear aerodynamics inherent to tail-sitter UAVs.
While the wings of a tail-sitter can produce the desired lift force
to enhance power efficiency, they also introduce highly non-
linear aerodynamic forces into the system dynamics. Unlike
fixed-wing airplanes that are primarily confined to a
conservative-level flight regime where the wing aerodynamics
are well understood as being linear, tail-sitters usually operate
within a large flight envelope with a wide range of angle of
attack (AoA), where the wing aerodynamics exhibit extreme
nonlinearity. Consequently, the study on differential flatness as
well as high-precision planning and control of tail-sitter UAVs
that fully exploit aerodynamic models is significantly compli-
cated and still remains an open question.

Besides the theoretical difficulty, trajectory generation
and tracking of tail-sitter UAVs are also confronted with
practical challenges. For example, during outdoor long-
range missions, a tail-sitter UAV often suffers from
model uncertainties and considerable wind disturbances.
Other constraints such as actuator saturation, sensor noise,
and limited onboard computation resource also ask for high
robustness and computation efficiency of the designed
algorithms.

1.1. Contributions

In this work, we address the challenge of high-quality
trajectory generation and high-performance tracking con-
trol of tail-sitters by leveraging the differential flatness
property, aiming to enable agile tail-sitter flights within the
whole envelope in real-world environments. Specifically,
our contributions are outlined as follows.

1. We show that the tail-sitter is differentially flat in the
coordinated flight condition, in considering the actual
aerodynamic model without any simplifications.

2. Based on the differential flatness, we develop an
optimization-based trajectory generation method en-
abling aggressive flights while taking account of ac-
tuator constraints, flight time, dynamical feasibility, and
singularity conditions in coordinated flight.

3. We propose a two-stage control architecture. The first
stage transforms the planned flat-output trajectory into a
state–input trajectory while compensating wind effect
and treating singularities. The second stage is a real-
time state trajectory tracking controller.

4. For the second stage, we develop a global, model-based,
minimally parameterized, and singularity-free model
predictive control (MPC) for trajectory tracking within
the entire tail-sitter flight envelope.

5. We demonstrate and validate our algorithms via ex-
tensive real-world experiments on an actual quadrotor
tail-sitter prototype in both indoor and outdoor envi-
ronments. To our best knowledge, it is the first tail-sitter
demonstration of flying through narrow tilted windows
and outdoor aerobatics.

1.2. Outline

The outline of the rest of the paper is as follows. Section
2 reviews the related work. The system dynamics including
the aerodynamic model are introduced in Section 3. The
fundamental property of differential flatness is proved in
Section 4. Section 5 describes the system architecture in-
cluding high-level trajectory generation and tracking, and
low-level control. Section 6 presents the optimization-based
trajectory generation and its solver. Section 7 derives the
error-state dynamics along the reference trajectory leading
to an on-manifold MPC. Section 8 presents real-world
experiments validating our approach. Finally, Section
9 concludes the paper with extensions and limitations.

2. Related work

2.1. Tail-sitter control

There is a wealth of research on tail-sitter control which can
be generally categorized into two main strategies: the
separated control strategy, which consists of several isolated
controllers designed for respective flight phases, and the
global control that regulates the vehicle maneuvers within
the entire envelope under a unified controller. We will
discuss these control approaches in the following content.

Since the tail-sitter dynamics reduce to a rotary-wing
model and a fixed-wing model in low-speed vertical flight
and high-speed level flight, respectively, separated control
methods (Frank et al., 2007; Oosedo et al., 2013; Lyu et al.,
2017b) usually divide the flight process into three phases—
vertical flight (including takeoff, landing, and hovering),
transition, and level flight—and design controllers sepa-
rately for each phase. The vertical flight dynamics are
linearized at the stationary hovering equilibrium (Frank
et al., 2007; Matsumoto et al., 2010; Lyu et al., 2017b)
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and controlled by means of established control methods for
quadrotors, such as loop-shaping (Zhou et al., 2018), robust
control (Lyu et al., 2018b), and MPC (Li et al., 2018). The
level flight controllers are usually borrowed from the fixed-
wing airplanes and UAVs, such as the total energy control
system (Lambregts, 1983) which is widely used in the open-
source autopilot PX4 (Meier et al., 2015).

Transition control is a key challenge for the separated
control strategy and there is rich literature addressing this
issue. The aerodynamics become highly nonlinear during
the transition due to the dramatic change of AoA. An in-
tuitive linear control method is to feed a pre-designed profile
of linearly decreasing or increasing pitch angle to the at-
titude controller with a constant altitude command (Verling
et al., 2016; Lyu et al., 2017a), forcing the vehicle to pitch
down or up until triggering the mode-switching condition.
Because of the nonlinear dynamics, gain-scheduling tech-
niques (Kita et al., 2010; Jung and Shim, 2012) could be
applied to enhance the stability margin. However, this linear
method is not always dynamically feasible and usually
results in undesired altitude deviation. The altitude control
performance can be improved either by a well-designed
transition planner (Naldi and Marconi, 2011; Oosedo et al.,
2017; Wang et al., 2017a; Li et al., 2020a) using accurate
aerodynamic models or a sophisticated altitude controller,
such as iterative learning control (Xu et al., 2019b). A
limitation of these methods is their focus on the altitude and
pitch control to transit a tail-sitter to the level flight phase,
often neglecting the lateral motion or any maneuvers (e.g.,
bank turns) during the transition, which are necessary for
obstacle avoidance in low-altitude cluttered environments.

To sum up, although the separated strategy eases the
controller design and has widespread use in practice, the
controller switching usually causes unexpected transient
response, thereby degrading control performance. Given
that a tail-sitter would frequently enter and exit the transition
regime (i.e., a specified range of pitch angle and airspeed)
when performing aggressive maneuvers, a global control
strategy that uses a unified system model and control law
serving for the whole envelope without switching among
different flight phases (e.g., hovering, transition, and level
flight) is more preferable. This direction has prompted a
significant amount of research.

Model-free global control methods for tail-sitters do not
rely on vehicle aerodynamic models but manage to ap-
proximate the aircraft dynamics locally and stabilize the
local approximation by using linear theory. For example,
Barth et al. (2020) proposed a cascaded model-free global
control framework based on quasi-static assumptions. The
vehicle system is decoupled, approximated, and estimated
locally as a group of second-order piece-wise linear sys-
tems, and thus the reference thrust and attitude can be solved
from the desired body velocity. Similarly, Cheng and Pei
(2022) employed an adaptive control law with an IMU-
based thrust-attitude decoupling method, assuming zero
gradient for the aerodynamic forces. Although model-free
methods can estimate and compensate the unmodeled

aerodynamics, they apply small control input at each step to
maintain the effective region of the state–input linearization.
These approaches are not ideal to agile flights requiring
more aggressive control inputs. Consequently, the control
performance degrades (i.e., altitude error exceeds 1m
during transition) during highly agile maneuvers as dem-
onstrated in Barth et al. (2020) and Cheng and Pei (2022).

To further improve the control performance, model-
based global controllers of varying sophistication have
been proposed. For instance, Ritz and D’Andrea (2017)
used a classic aerodynamics model to derive the desired
attitude and thrust from the acceleration commands, by
specifying the coordinated flight condition. To enable real-
time implementation on a low-cost microcontroller, the
aerodynamic model was simplified based on first-principle
derivations, leading to considerable tracking errors. Zhou
et al. (2017) also calculated the desired attitude but by
solving a non-convex optimization using an accurate
aerodynamic model obtained from wind tunnel test.
However, this controller is computational demanding,
which precludes real-time implementation. When the air-
speed is zero, the definitions of angle of attack and sideslip
angle become invalid, introducing singularity into the
classic aerodynamic model used by these two research
studies. There are studies employing alternative aerody-
namic characterizations to avoid this singularity. Pucci et al.
(2013) transformed a 2-dimension (2-D) planner VTOL
(PVTOL) vehicle into an orientation-independent model,
separating the computation of the vehicle thrust and ori-
entation, thereby leading to a unified controller design
(Pucci, 2012). The author also derived the conditions,
spherical equivalency, that airfoil aerodynamic character-
istics must satisfy for the transformation to hold. Lustosa
(2017) proposed a polynomial-like global aerodynamic
parameterization, termed as the f-theory model, and de-
veloped a linear quadratic regulator (LQR) based on the
model. Their experiment results show that the LQR gain
must be scheduled during the transition to avoid the in-
stability in pitch angle caused by the model errors of the
f-theory. Alternatively, Smeur et al. (2020) designed a
global incremental nonlinear dynamic inversion (INDI)
controller by linearizing the system at the current control
inputs. To design the INDI controller, it requires knowing
the current aerodynamic force (and moment) applied to the
UAVand its gradient with respect to (w.r.t.) the control input
increment (pitch angle and velocity): the former one is
obtained from inertial measurement units (IMUs), which
suffer from either large measurement noise caused by
constant propeller rotation or considerable filter delay; the
latter is derived from a simple, heuristic aerodynamic model
at a quasi-static condition where the flight path angle is zero.
More recently, Tal and Karaman (2021) integrated the
aforementioned f-theory model and INDI technique into a
global cascade PD controller applicable to both coordinated
and uncoordinated flight. They also introduced feedforward
jerk and yaw rate to improve the tracking performance and
demonstrated indoor aerobatics (Tal and Karaman, 2022).
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Compared to the previous INDI method (Smeur et al., 2020)
with an over-simplified aerodynamic model, the f-theory
model used in Tal and Karaman (2021, 2022) can signifi-
cantly increase the control accuracy. However, similar is-
sues, that is, significant measurement noise or filter delay,
still persist in INDI-based methods. Moreover, the f-theory
models have limited fitting capability, leading to larger
model errors than the classic model, as confirmed by the
authors in Lustosa et al. (2019). To sum up, the existing
mode-based global control methods typically make com-
promise between model fidelity and computational load.
While high-fidelity models are costly and impractical for
real-time implementation, simplified models are relatively
easy to be estimated from limited experimental data but tend
to degrade the control accuracy to varying extents.

Our method aims to fully exploit the UAV’s actual
aerodynamics to achieve high-accuracy and real-time
control performance. Compared to the existing works,
our proposed control scheme has the following advantages:
(1) Existing works either give up the vehicle aerodynamic
model (e.g., model-free methods [Barth et al., 2020; Cheng
and Pei, 2022]) or compromise to simplified models (e.g.,
simplified classic model [Ritz and D’Andrea, 2017],
spherical equivalence model [Pucci et al., 2013], steady-
level-flight model [Smeur et al., 2020], and f-theory model
[Lustosa, 2017; Tal and Karaman, 2022]), while our pro-
posed controller leverages classic aerodynamic models
without any simplification on its aerodynamic coefficients.
The use of high-fidelity aerodynamic model is crucial to
achieve higher control accuracy. (2) Existing controllers
either ignore wind effect in the environment (e.g., Ritz and
D’Andrea (2017); Lustosa (2017)), or compensate the
disturbance through incremental control updates from in-
creased control error (e.g., Smeur et al. (2020); Tal and
Karaman (2022)), while our proposed approach incorpo-
rates wind effect by adjusting the reference trajectory (e.g.,
attitude) to maintain coordinated flight based on the dif-
ferential flatness and then tracks the adjusted trajectory in
real time. Given the considerable aerodynamic efficiency

loss of tail-sitter in windy conditions (Vourtsis et al., 2023),
our proposed feedforward strategy compensates the wind
effect in a pre-emptive way before the control error actually
accumulates. (3) Existing controllers (Ritz and D’Andrea,
2017; Tal and Karaman, 2022) simultaneously track tra-
jectories and process singularities, while our work decou-
ples singularities from the tracking controller, by the two-
stage architecture. Such separation isolates the singularity
treatment from the state tracking controller. (4) An on-
manifold MPC is proposed for trajectory tracking in high
accuracy. MPC tracks full states by solving a finite-horizon
optimization at each step to yield the best future behavior
based on the system model (Borrelli et al., 2017). Its pre-
dictive nature that exploits the information of the future
reference trajectory contributes to a higher control band-
width for trajectory tracking. In contrast, existing works
(Ritz and D’Andrea, 2017; Barth et al., 2020; Smeur et al.,
2020; Tal and Karaman, 2022) usually track the position
trajectory in a cascaded control structure (e.g., a position
controller followed by an attitude controller), which sim-
plifies the outer loop design but simultaneously constrains
the outer loop’s bandwidth. Admittedly, MPC is more
computationally demanding and its convergence is chal-
lenging to guarantee, but its predictive nature and constraint
handling capability have led to a wealth of successful ro-
botic applications, such as the leading-edge Boston Dy-
namics Atlas humanoid robot (Marion, 2021), drone racing
(Foehn et al., 2021). and aerobatics (Kaufmann et al., 2020;
Lu et al., 2023). In summary, a comparison of our work with
those existing state-of-the-art global controllers is presented
in Table 1.

2.2. Tail-sitter trajectory generation

Depending on the control strategy reviewed above, there are
different trajectory generation algorithms for tail-sitters in
the literature. For separated control strategies, trajectories
are generated separately for each phase. When the tail-sitter
dynamics reduce to a rotary-wing model in low-speed

Table 1. Comparison of the state-of-the-art global control methods for tail-sitter UAVs.

Study Methodology
Aerodynamic
model Singularity

Flight
condition

Wind
compensation

Demo
flights

Ours MPC and differential flatness Classic Specific
airspeed

Coordinated On reference *, †, ‡

Tal and Karaman
(2022)

Cascaded PD and INDI and
differential flatness

f-theory Specific
airspeed

No restriction On input *, ‡

Lustosa (2017) Scheduled LQR f-theory None No restriction None *
Ritz and D’Andrea
(2017)

Cascaded PID Classic Specific
airspeed

Coordinated None *

Smeur et al. (2020) INDI Quasi-static Euler angle Not specified On input *
Cheng and Pei
(2022)

Adaptive control — Euler angle Not specified None *

Symbols *, †, ‡ indicate three different demonstrated maneuvers: the typical maneuvers * include common tail-sitter flights such as transition, level flight,
and loiter; the SE(3) maneuvers † denote a whole-body flying motion with specified pose and velocity; the aerobatic maneuvers ‡ denote aggressive
maneuvers with large attitude variation and flight speeds.
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vertical flight, well-established trajectory generation
methods for quadrotors (or multicopters) (Mellinger and
Kumar, 2011; Mueller et al., 2015) are applicable directly.
Trajectory planners for quadrotors can be also applied for
high-level autonomy, such as obstacle avoidance and au-
tonomous navigation. Similarly, traditional fixed-wing
planners (Park et al., 2004; Chitsaz and LaValle, 2007)
can be adapted for tail-sitter in level flights. For example,
the L1 guidance proposed by Park et al. (2004) has been
widely used in prototype verification (Frank et al., 2007;
Jung and Shim, 2012; Verling et al., 2016) and commercial
Autopilots (Meier et al., 2015) for tail-sitter level flights.

Generating a transition trajectory between vertical and
level flights is relatively challenging due to the nonlinear
aerodynamics during the transition. The intuitive linear
transition method, which designs linearly increasing or
decreasing pitch angle and constant altitude command
(Verling et al., 2016; Lyu et al., 2017a) as mentioned before,
does not consider the dynamical feasibility, thus requiring a
lot of empirical trials and errors. To incorporate dynamic
feasibility, trajectory generation is usually formulated into
nonlinear optimization problems subject to different control
objectives and constraints. For instance, Kita et al. (2010)
calculated a pitch angle and thrust profile achieving the
shortest transition time. Naldi and Marconi (2011) con-
sidered a minimum-time and minimum-energy optimal
transition problem, while Oosedo et al. (2017) and Li et al.
(2020a), respectively, minimized the flight time and energy
to maintain a constant altitude during the transition flight.
However, solving these non-convex optimization problems
is computationally expensive, preventing from onboard
implementation and online replanning. These methods are
also confined to straight-line transition that cannot be ex-
tended to other maneuvers like transition with banked turns
to avoid obstacles. Simplified dynamic models like the
point-mass model (McIntosh and Mishra, 2022) can be used
to expedite obstacle-free planning, but again, the dynamical
feasibility is omitted. Overall, existing separated trajectory
generation approaches generate simple trajectories with
limited maneuverability, making them only suitable for
flights in open areas. The aerodynamic simplification and
kinodynamic limitation prevent them from being extended
to dynamically feasible and agile flights in cluttered
environments.

Compared to the separated trajectory generation, de-
signing a dynamically feasible trajectory that spans the
entire envelope is a significantly more complex task because
the tail-sitter is an under-actuated system with extremely
nonlinear aerodynamics. For under-actuated mechanical
systems, such as tail-sitters, the differential flatness is an
essential property that can significantly ease trajectory
generation. If a dynamic system is differentially flat, its full
states and inputs can be determined by algebraic functions
of flat outputs and their derivatives (Fliess et al., 1995;
Murray et al., 1995). This property simplifies the trajectory
generation problem to a set of algebraic operations in the
flat-output space. This is a significant reduction in

complexity compared to the state-space planning, which
usually has to take into account on-manifold kinematic
constraints. For example, the differential flatness property of
quadrotors (Mellinger and Kumar, 2011; Faessler et al.,
2018) has been thoroughly studied and enabled a variety of
applications in trajectory planning.

Research on the differential flatness of tail-sitter UAVs is
scarce due to the extremely complicated, nonlinear aero-
dynamics mentioned above. Early research based on sim-
plified models can trace back to the 1990s. Hauser et al.
(1992) and Martin et al. (1996) studied the differential
flatness and control of a simple 2-D PVTOL aircraft. Van
Nieuwstadt and Murray (1998) simply considered the
transition dynamics as a nominal flat system where the
aerodynamics are treated as perturbations. Recently, Tal and
Karaman (2021) showed the differential flatness based on
the f-theory aerodynamic model. The vehicle position and
yaw angle are chosen as flat outputs, which allow for a
global framework of trajectory optimization (Tal et al.,
2023). The optimization could then be solved efficiently
in the flat-output space, and the flatness transformation
provides state projections (e.g., mapping acceleration to
attitude) in a cascaded controller. Yet, this framework has
certain theoretical limitations. First, the differential flatness
is built on the coarse f-theory aerodynamic model, the
model errors of which degrade the trajectory quality and the
resultant control performance. Second, the f-theory model
assumes a windless condition that only considers the vehicle
attitude and velocity w.r.t. the fixed inertial frame, rather
than the aerodynamic angles and airspeed. Lastly, the
method must assume that the vehicle has no body or vertical
rudder that produces side forces. Hence, this differential
flatness property is not applicable to outdoor environments
commonly with external winds or more general tail-sitter
airframes.

Contrasted with early studies based on simplified 2-D
models (Hauser et al., 1992; Martin et al., 1996), our work
considers the full 3D model of real tail-sitter UAVs. Fur-
thermore, in comparison to recent research that used sim-
plified aerodynamic model, such as the spherical
equivalence model (Pucci et al., 2013) and the f-theory
model (Lustosa, 2017), or that required particular airframe,
such as configurations without vertical surfaces necessitated
by Tal et al. (2023), we prove the differential flatness
property on accurate aerodynamic models and more general
tail-sitter airframes. Based on the proved differential flat-
ness, we propose a systematic trajectory generation
framework for tail-sitter UAVs. High-quality trajectories are
optimized subjecting to actuator constraints, flight time, and
dynamical feasibility.

It is interesting to note that, both Tal and Karaman
(2022), which assumes no vertical surfaces but with un-
coordinated flight, and ours, which assumes coordinated
flight, eventually lead to the same effect of avoiding lateral
forces. The lateral force would dramatically complicate the
solving of the UAV state (i.e., attitude and thrust) due to the
highly nonlinear aerodynamic forces. Zhou et al. (2017)
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solve these highly nonlinear constraints by leveraging
numerical approach, leading to high computational com-
plexity not suitable for real-time implementation. Instead,
avoiding such lateral force could effectively isolate and
solve the angle of attack in our work (or pitch angle in Tal
and Karaman (2022)), hence the rest UAV states.

3. Flight dynamics

This section introduces the dynamic models that describe
the motion of tail-sitters. We define coordinate frames for
tail-sitter modeling, trajectory generation, and tracking
control in Section 3.1. The dynamic model of the tail-sitter
is presented in Section 3.2, and Section 3.3 introduces the
classic aerodynamic models.

3.1. Coordinate frames

As shown in Figure 1, the definition of coordinate frames
follows the convention of traditional fixed-wing aircraft.
The world frame {O, x, y, z} is defined as North-East-Down
(NED) and is considered as the inertial frame. The body
frame {Ob, xb, yb, zb} is defined as Forward-Right-Down
where the body axis xb points along the nose of the aircraft
and Ob is the vehicle center of gravity.

3.2. Airframe dynamics

We view the whole body of the tail-sitter as a rigid body.
Referring to the Newton–Euler equations, the translational
and rotational dynamics of the aircraft are modeled as
follows:

_p ¼ v (1a)

_v ¼ gþ aTRe1 þ 1

m
Rf a (1b)

_R ¼ RPωR (1c)

J _ω ¼ τ þMa � ω × Jω (1d)

where p and v are, respectively, the vehicle position and
velocity in the inertial frame,ω is the angular velocity in the
body frame,R denotes the rotation from the inertial frame to
the body frame, m is the total mass of the aircraft, J is the
inertia matrix, and g = [0 0 9.8]T is the gravity vector in the
inertial frame. aT and τ denote the thrust acceleration scalar
and control moment vector produced by actuators, re-
spectively (e.g., four motors for a quadrotor tail-sitter). fa
and Ma are the aerodynamic force and moment in the body
frame, respectively. The notation PaR converts a 3-D vector a
into a skew-symmetric matrix such that a× b ¼
PaRb,"a, b2R

3. e1 = [1 0 0]T, e2 = [0 1 0]T, e3 = [0 0 1]T are
unit vectors used in the remaining of the paper.

Collecting all the state and input elements of the dy-
namics (1) leads to the system state and input below:

xfull ¼ ðp, v,R,ωÞ 2R
3 ×R3 × SOð3Þ×R3 (2a)

ufull ¼ ðaT , τÞ 2R ×R3 (2b)

Note that in the above model, we assume that the thrust
direction is aligned to the body X-axis xb. For cases where
the thrust has a fixed installation angle, it can be trivially
handled by re-defining the body frame.

3.3. Aerodynamics

Referring to Etkin and Reid (1959), the aerodynamic force
fa is modeled in the body frame as follows:

fa ¼
2
4 f axf ay
f az

3
5 ¼

2
4�cos α 0 sin α
0 1 0
�sin α 0 �cos α

3
5
2
4D
Y
L

3
5 (3)

where α is the angle of attack. The force components L,D,Y
are the lift, drag, and side force, respectively. The aerodynamic
moment vector Ma consists of rolling L, pitching M, and
yawing N moment along the body axis xb, yb, zb:

Ma ¼ ½ L M N �T (4)

The force and moment components L,D,Y,L,M ,N can
be written as products of non-dimensional coefficients,
dynamic pressure 1/2ρV2, the reference area S (e.g., the
wing area), and the characteristic length c (e.g., the mean
aerodynamic chord), as follows:

L ¼ 1

2
ρV 2SCLðα, βÞ

D ¼ 1

2
ρV 2SCDðα, βÞ

Y ¼ 1

2
ρV 2SCY ðα, βÞ

,

M ¼ 1

2
ρV 2ScClðα, βÞ

N ¼ 1

2
ρV 2ScCmðα, βÞ

L ¼ 1

2
ρV 2ScCnðα, βÞ

(5)

where ρ is the air density and V = kvak is the norm of the
airspeed. CL, CD, CY are the lift, drag, and side force

Figure 1. Coordinate frames: the world frame, body frame, and
aerodynamic forces.
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coefficients, while Cl, Cm, Cn are the rolling, pitching, and
yawing moment coefficients, respectively. The aerody-
namic coefficients are functions of the angle of attack α and
the sideslip angle β, depending on the design of the airfoil
profile and the overall airframe. The accurate aerodynamic
coefficients are usually identified by wind tunnel tests (Lyu
et al., 2018a). For readability, the total aerodynamic force fa
in (3) can be rewritten as

f a ¼ 1

2
ρV 2Scðα, βÞ (6)

where

cðα, βÞ ¼ ½ cxðα, βÞcyðα, βÞczðα, βÞ �T (7a)

cxðα, βÞ ¼ �CDðα, βÞcos αþ CLðα, βÞsin α (7b)

cyðα, βÞ ¼ CY ðα, βÞ (7c)

czðα, βÞ ¼ �CDðα, βÞsin α� CLðα, βÞcos α (7d)

Given the vehicle ground velocity v and wind speed
w defined in the inertial frame, the airspeed va, the angle
of attack α, and the sideslip angle β are calculated as
follows:

va ¼ v� w, vBa ¼ RTva ¼
h
vBax vBay vBaz

iT
, (8)

V ¼ kvak, α ¼ tan�1

 
vBaz
vBax

!
, β ¼ sin�1

 
vBay
V

!
(9)

We further assume that the airframe is symmetric to the
body X-Z plane, which implies

CLðα, βÞ ¼ CLðα, � βÞ,"α, β (10a)

CDðα, βÞ ¼ CDðα, � βÞ,"α, β (10b)

CY ðα, βÞ ¼ �CY ðα, � βÞ,"α, β (10c)

and hence "α

CY ðα, 0Þ ¼ 0,
∂CLðα, βÞ

∂β

����
β¼0

¼ ∂CDðα, βÞ
∂β

����
β¼0

¼ 0: (11a)

∂cðα, βÞ
∂β β¼0 ¼

�
0 ∂cyðα, βÞ

∂β

����
β¼0

0
�T
,

����� (11b)

∂cðα, βÞ
∂α β¼0 ¼

�
∂cxðα, 0Þ

∂α
0 ∂czðα, 0Þ

∂α

�T
:

����� (11c)

4. Differential flatness in coordinated flight

In this section, we aim to investigate the fundamental
differential flatness property which is the theoretical
foundation for trajectory generation and tracking control.

We prove that the tail-sitter is differentially flat in a flight
condition known as the coordinated flight.

4.1. The coordinated flight

An aircraft in coordinated flight indicates a flight condition
without sideslip (e.g., β ¼ 0, vBay ¼ 0) (Clancy, 1975). This
flight condition does not restrict the degree-of-freedom of
the tail-sitter, which is still able to reach any position in the
entire 3-D space. Moreover, the coordinated flight is usually
preferred over uncoordinated flight (Stevens et al., 2015) for
several practical reasons: (1) the coordinated flight condi-
tion ideally achieves maximum aerodynamic efficiency and
also minimizes undesirable aerodynamic moment that could
cause spins. (2) It is naturally required when the navigation
sensors (e.g., cameras) mounted on the vehicle’s nose have a
limited FoV. (3) Restricting the sideslip angle around zero
reduces the efforts for aerodynamic model identification by
only requiring the longitudinal aerodynamic coefficients
around β = 0 (see Figure 2).

4.2. The differential flatness

Definition 1. (Fliess et al., 1995) A system _x ¼
fðx,uÞ, x2R

n,u2R
m, rankð∂fðx,uÞ=∂uÞ ¼ m is dif-

ferentially flat, if there exists a flat output y2R
m of the

form

y ¼ yðx, u, _u,…,uðpÞÞ (12)

such that the system state can be expressed explicitly by
functions of the flat output and a finite number of its
derivatives:

Figure 2. Longitudinal aerodynamic coefficients CL and CD of
our previous quadrotor tail-sitter UAV prototype, identified by
wind tunnel tests (Lyu et al., 2018a).
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x ¼ xðy, _y,…, yðqÞÞ (13)

u ¼ uðy, _y,…, yðqÞÞ (14)

The definition of differential flatness formally requires an
equal dimension of the control input and the selected flat
output for a system with independent inputs. However, the
control input ufull defined in (2) is not independent, due to
the coordinated flight condition.

Theorem 1. Given the system dynamics in (1) and
definition of state and input in (2), when the UAV
performs coordinated flight, it holds that

rank

�
∂f
�
xfull,ufull

�
∂ufull

�
¼ 3 (15)

Proof. The proof is given in Appendix A.

It is seen in Theorem 1 and its proof that two elements of
the body angular velocity and consequently the control
moment τ are coupled, and the control input ufull reduced by
one degree-of-freedom to maintain the coordinated flight
condition. The reduced input dimension decreases the rank
of derivative ∂f(xfull, ufull)/∂ufull by one, resulting in a flat
output vector with a dimension of three only.

Our choice of the flat output is the vehicle position
p2R

3 in the inertial frame. In the following, we prove that
all of the vehicle states xfull and inputs ufull can be expressed
by functions of p and its derivatives.

The position p and velocity v are simply p itself and its
first-order derivatives, respectively. To express the attitude
R as a function of p and its derivatives, we observe that in
the coordinate flight, (1) there is no airspeed along the body
Y-axis, implying that yb is perpendicular to the airspeed va;
and (2) because the aerodynamic sideslip force Y is zero
(due to coordinated flight and symmetric airframe) and the
thrust is in the body X-Z plane, there is no force (and hence
acceleration) except gravity along the body Y-axis. That is
being said, the total acceleration excluding gravity, _v� g,
has no projection on the body Y-axis (i.e., yb is perpen-
dicular to _v� g). As shown in Figure 3(a), being perpen-
dicular to both _v� g and va, yb can only be in one of two
opposite directions. We choose the one closest to the body
Y-axis determined at the previous time step, denoted as yprevb ,
to prevent drastic attitude change:

r ¼ signððva × ð _v� gÞÞ � yprevb Þ (16)

yb ¼ r
va × v� gð Þ

kva × v� gð Þk, if kva × v� gð Þk ≠ 0 (17)

where sign(a) denotes the sign of a2R and the scalar r
denotes the direction of the body Y-axis, ensuring that yb �
yprevb ≥ 0 (the angle between yb and yprevb is always less than
90°). kva × ð _v� gÞk ¼ 0 is a singularity condition that will
be discussed in Section 4.3.

Next, we show how to solve the body Z-axis zb and body
X-axis xb. We note that the sideslip force is zero due to the

coordinated flight; hence, the aerodynamic force fa re-

duces to fa ¼
	
fax 0 faz


T
and Rfa ¼ xbfax þ zbfaz.

Substituting Rfa into (1b) leads to the following equation:

aTxb þ fax
m
xb þ faz

m
zb þ g ¼ _v (18)

Decomposing the equation along the direction of xb and zb,
respectively, we have (see Figure 3(b))

aT ¼ xTb _v� gð Þ � fax
�
m, zTb _v� gð Þ ¼ faz

�
m (19a)

Since xb, zb, _v� g, and va are all perpendicular to yb,
they should lie in the same plane (see Figure 3(b)). Hence,
we have xTb ð _v� gÞ ¼ k _v� gkcosðγ� αÞ, zTb ð _v� gÞ ¼
k _v� gksinðγ� αÞ, and

aT ¼ k _v� gkcosðγ� αÞ � fax
�
m (20a)

k _v� gksinðγ� αÞ ¼ �faz
�
m (20b)

where

γ ¼ r � atan 2ðkð _v� gÞ× vak, ð _v� gÞ � vaÞ, if kvak ≠ 0
(21)

and r denotes the angle direction (the positive direction of γ
and α is defined such that rotating va along yb will reach
_v� g and xb, respectively), while kvak ≠ 0 has been
specified in kva × ð _v� gÞk ≠ 0 above.

It is noticed that (20b) only involves the known flat
derivatives and the angle of attack α, which can hence be
solved. Specifically, (20b) can be written as a nonlinear
root-finding problem in terms of α:

FðαÞ ¼ h sinðγ� αÞ þ czðα, 0Þ ¼ 0 (22)

where

h ¼ 2mk _v� gk
ρV 2S

(23)

In the function of F(α), the variables h and γ are completely
determined by the flight trajectory (and wind gust), while cz(α,

Figure 3. A tail-sitter UAV in coordinated flight: (a) the axis yb is
perpendicular to both va and _v� g; (b) the angle of attack α and
thrust acceleration aT are determined on the longitudinal plane by
the fact that the total acceleration comprising the drag acceleration
D=m, the lift acceleration L=m, aT, and gravity g is equal to _v.
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0) is the third element of c in (7), which is completely de-
termined by the actual aerodynamic configuration of the UAV.
It should be also noted that γ and h are independent because
they are, respectively, the angle and length ratio between _v� g
and va. These properties allow us to investigate the shape of
F(α), hence the solution of α, for a given pair of (h, γ). An
example of such function F(α) is presented in Figure 4. As can
be seen, the equation F(α) = 0 is highly nonlinear due to the
nonlinear aerodynamic model cz(α, 0), hence no closed-form
solution can be found in general. In practice, the equation can
be solved numerically, such as Newton–Raphsonmethod using
cz(α) and ∂cz(α, 0)/∂α identified in advance. Moreover, the
extreme nonlinearity inF(α) also results inmultiple solutions of
α in most cases. To avoid the ambiguity and prevent drastic
change of α, αprev, the value of α determined at the previous
time step, could be used as the initial guess for the numerical
solver, to find a solution close to αprev.

With the solved angle of attack α, the body X-axis xb, and
hence the rotation matrix R, can be determined as

xb ¼ Exp αybð Þ va
kvak, if kvak ≠ 0, (24a)

R ¼ xb yb zb½ �, zb ¼ xb × yb (24b)

where Exp(�) is the exponential map on SO(3) and kvak ≠ 0 has
been specified in the singularity condition kva × ð _v� gÞk ≠ 0
above.With the solved α and β = 0, the aerodynamic force fa and
system input aT are determined by (6) and (20a), respectively.

Next, to show that the body angular velocity ω is a
function of the flat output, we take the time derivative of the
translational dynamics (1b) as follows:

v:: ¼ _aTR þ aTRPωRð Þe1

þ 1

m
R PωRfa þ ∂fa

∂ RTva
� � d

dt
RTva
� � !

¼ 1

m
R

∂fa
∂vBa

RT _va þ _aTRe1

þR �
�

aTe1 þ fa
m

� �
þ 1

m

∂fa
∂vBa

�
vBa
�� �

ω

(25)

where ∂fa=∂vBa is evaluated at β = 0 and can be obtained by
taking derivative of (6) as below.

Theorem 2. Given the aerodynamic coefficients c(α, β)
of a symmetric airframe configuration satisfying (11), the
partial derivative ∂fa=∂vBa at β = 0 is

∂fa
∂vBa

¼ ρS
2

�
2cvB

T

a þ ∂c
∂α

vB
T

a be2c þ V
∂c
∂β

eT2

�
(26)

Proof. The proof is given in Appendix B.

With €v, _va,R, fa, aT and ∂fa=∂vBa solved above, the
equation (25) forms three linear functions for _aT and ω. To
solve _aT and ω uniquely, we need to find one more equation.
Recall that in coordinated flight the tail-sitter has no lateral
airspeed: the condition requires zero lateral airspeed:

vBay ¼ eT2R
Tva ≡ 0 (27)

which leads to the derivative on the both sides:

�eT2 PωRR
Tva þ eT2R

T _va ¼ 0

0� vTaRbe2cωþ yTb _va ¼ 0
(28)

Combing (28) and (25), we obtain four linear equations
in terms of _aT and ω, which can hence be solved as follows:�

_aT
ω

�
¼ N�1h ¼

�
N1

N2

��1�
h1

h2

�
, if rankðNÞ ¼ 4 (29)

where rank(N) < 4 is the second singularity condition that
will be discussed in Section 4.3, and

h1 ¼ yTb _va (30a)

h2 ¼ €v� 1

m
R

∂fa
∂vBa

RT _va (30b)

N1 ¼
	
0 vTaRbe2c



(30c)

N2 ¼
�
Re1R

�
�
��

aTe1 þ fa
m

�
þ 1

m

∂fa
∂vBa

�
vBa
�� �

(30d)

Furthermore, the angular acceleration _ω can be attained
by further taking the derivative of (29):�

€aT
_ω

�
¼ d

dt

�
N�1h

� ¼ �N�1 _NN�1hþ N�1 _h (31)

where the matrix derivatives _N and _h are given in
Appendix C. It is noted that the coefficient gradients
∂2cz(α, 0)/∂α

2 (hence ∂2CL(α, 0)/∂α
2 and ∂2CD(α, 0)/∂α

2)
should be further provided. Then the control moment τ is
solved from (1d) as

τ ¼ J _ω�Ma þ ω × Jω (32)

where the aerodynamic moment Ma is calculated from (5)
based on β = 0 and the α solved above.

Figure 4. Numerical examples of the root-finding problem of
F(α) = 0 in (22) for five pairs of (h, γ) and the longitudinal
aerodynamic coefficients shown in Figure 2.

Lu et al. 9



Remark 1. Formally, the flatness functions are real
analysis by the classic definition. However, when
deriving the flatness function of angle of attack α, we
cannot find its closed-form solution for a general
aerodynamic model due to the extreme nonlinearity.
Fortunately, we reduce this problem into a one-
dimensional root-finding problem as shown in
Figure 4, that can be solved efficiently by numerical
methods in real-time computation. Except α, the
remaining flatness functions are all given explicitly.
Remark 2. In the aerodynamic model (6) and the dif-
ferential flatness derivation above, we assumed that the
aerodynamic force fa depends only on the vehicle states
(i.e., airspeed and attitude) but not the control inputs
(i.e., moment τ and thrust aT). This is generally true for
quadrotor tail-sitter VTOL UAVs where no extra flaps
are used and the propellers are distant from wing, hence
the wing aerodynamic force fa not depending on the
propeller airflow. For tail-sitter UAVs whose moment τ is
produced by flaps at the trailing edge of wings, such as
the twin-rotor tail-sitter UAV in Tal and Karaman (2022),
the flaps deflection and propeller airflow would change
the aerodynamic force fa, causing the aerodynamic force
fa to depend on the control inputs and preventing the
solving of (22). This issue could be overcome practically
by a strategy similar to Tal and Karaman (2022), which
assumes very small changes of control inputs (i.e., flap
deflections and propeller thrust) at each step, so that
aerodynamic force fa can be evaluated at the last flap
angle and propeller thrust and then used to solve ω and τ
as detailed above.

4.3. Singularity conditions

We discuss the two conditions that singularities occur in the
above flatness functions, one is kva × ð _v� gÞk ¼ 0 as
specified in (17) and the other is rank(N) < 4 as specified in
(29). We first investigate the possible singularity condition
where rank(N) < 4, by calculating the determinant of N as
follows:

Theorem 3. Given the aerodynamic coefficients c(α, β)
of a symmetric airframe configuration satisfying (11),
the determinant of N defined in (30) is calculated as
follows.

detðNÞ ¼ �ρSV 2

2m

∂FðαÞ
∂α

kva × ð _v� gÞk (33)

Proof. The proof is given in Appendix D.

As can be seen in (33), there are two cases that make N
singular, one is ∂F(α)/α = 0 and the other is
kva × ð _v� gÞk ¼ 0. Because the angle of attack α is solved
from F(α) = 0 in (22), the former condition essentially
requires F(α) passing through zero with a zero slope, a
condition that rarely occurs for actual aerodynamic con-
figuration cz(α, β) (see Figure 4). Therefore, the singularity

condition rank(N) < 4 reduces to the first singularity con-
dition kva × ð _v� gÞk ¼ 0, which has to be considered. This
singularity condition breaks into the following three sub-
conditions:

k _v� gk ¼ 0 (34a)

kvak ¼ 0 (34b)

γ ¼ 0, ±π (34c)

We investigate the corresponding flight status for these
three conditions as follows.

4.3.1. Singularity sub-condition 1. k _v� gk ¼ 0 the sub-
condition k _v� gk ¼ 0 is the case where the vehicle is free
falling, which is undesired in usual flights and should be
avoided in the trajectory planning. Therefore, this sub-
condition would not be encountered in practice.

4.3.2. Singularity sub-condition 2. kvak = 0 the second sub-
condition kvak = 0 corresponds to zero airspeed, which
occurs when the vehicle hovers in windless environments
such as indoor places or flies in the same velocity as the
wind in outdoor environments.When the airspeed va is zero,
(17) becomes singular and hence cannot determine yb.
Actually, even when va is close to zero, (17) will be ill-
conditioned, where a small change in va may cause drastic
orientation change in yb. To avoid this ill condition, we
choose a small velocity threshold vmin (e.g., vmin =0.5 m/s).
When kvak < vmin, the aerodynamic force fa, which is
quadratic to kvak, can be safely ignored. Substituting fa = 0
into (18) leads to

xb ¼ _v� g

k _v� gk, aT ¼ k _v� gk (35)

For the axis yb (or equivalently, zb), it could be any
direction perpendicular to xb without affecting the
solution in (35) (see Figure 5(a)). To minimize the
unnecessary efforts for yawing control, we fix the ve-
hicle yaw angle at the value of yaw angle just before
kvak < vmin took place (e.g., when the vehicle decel-
erates to hover) or the value of yaw angle at initial time
(e.g., when the vehicle just took off from the ground).
Since the yaw angle is represented by the body Z-axis,
we hope to find a zb that has the smallest angle with zfixb ,
the vehicle body Z-axis just before kvak < vmin took
place or at initial time. This essentially causes zb to lie
on the plane formed by xb and zfixb (see Figure 5(a)),
which, in return, leads yb to be perpendicular to xb
(i.e., _v� g) and zfixb :

yb ¼
zfixb × ð _v� gÞ��zfixb × ð _v� gÞ�� (36)

with xb and yb, the vehicle attitude can be determined by
(24b).
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Next, to determine the body angular velocity, we notice

ðzfixb × ð _v� gÞÞTzb ≡ 0 always holds. Taking time derivative
on both sides and recalling that zfixb is a prescribed constant
vector, we have�

zfixb
�
v
::� �T

zb ¼ ��zfixb × v� gð Þ��yTbRbe3cω
¼ ��zfixb × v� gð Þ��eT1ω (37)

Moreover, neglecting the aerodynamics, the derivative of
translational dynamics in (25) can be rewritten as

v
:: ¼ ð _aTR þ aTRPωRÞe1 (38)

Combining (37) and (38), both _aT and ω can be solved
from the 4-D linear equations in the same form as (29) with
sub-matrices of h and N rewritten as follows:

h1 ¼
��
zfixb
�
v
::�T

zb (39a)

h2 ¼ v
::

(39b)

N1 ¼
	
0
��zfixb × ð _v� gÞ��eT1 
 (39c)

N2 ¼ ½Re1 � aTRbe1c � (39d)

Theorem 4. The determinant of N defined in (39) is
calculated as

detðNÞ ¼ �a2T
��zfixb × ð _v� gÞ�� (40)

Proof. The proof is given in Appendix E.1.
From (35), we have aT ¼ k _v� gk, which is not zero in

practice (see Section 4.3.1). Therefore, the only requirement

for both (36) and det(N) ≠ 0 is
���zfixb × ð _v� gÞ

��� ≠ 0, a

condition that is always true because at the moment kvak ≈
vmin, the body X-axis xfixb is almost aligned with _v� g (the
aerodynamic force is negligible and the thrust must provide
most of the special acceleration _v� g), meaning that zfixb
cannot be parallel to _v� g.

Finally, the angular acceleration and control moment are
also solved from (31) and (32), where the derivatives _h and
_N are recalculated in Appendix E.2.

4.3.3. Singularity sub-condition 3. γ = 0, ±π when the
airspeed va and the acceleration _v� g are parallel, the
singularity sub-condition γ = 0 or γ = ±π occurs. A common
possible case is that the vehicle performs vertical takeoff
and landing when the wind speed is zero. In this case, the
angle of attack α and thrust acceleration aT can still be
solved from (22) and (20a), respectively, but the body-Y
axis cannot be determined from (17), which is singular.
Actually, even when γ is close to zero, (17) will be ill-
conditioned, where a small change in va or _v� g may
cause drastic orientation change in yb. To avoid this ill
condition, we choose a small angle threshold γmin (e.g.,
γmin = 5°) that defines a set Γ = (�π, � π + γmin) [ (�γmin,
γmin) [ (π � γ, π]. When γ 2 Γ, we minimize the un-
necessary yaw control efforts by restricting the axes xb and
zb within the plane formed by va (or _v� g) and zfixb , the
vehicle body Z-axis just before γ 2 Γ occurs or at the initial
time. As a result, the body Y-axis is perpendicular to va (or
_v� g) and zfixb and is hence determined from (36). With yb,
the body X-axis and the vehicle attitude are determined
from (24).

To solve the body angular velocity, we take the time
derivative to the constraint ðzfixb × ð _v� gÞÞTzb ≡ 0 which is
identical to (37). Combing these constraints with the de-
rivative of the translational dynamics in (25), the body
angular velocity is solved in the same form as (29) where the
sub-matrices are given from (30) for h2, N2 and (39) for h1,
N1:

h1 ¼
��
zfixb
�
v
::�T

zb (41a)

h2 ¼ v� 1

m
R

∂f a
∂vBa

RT _va (41b)

N1 ¼
	
0
��zfixb × ð _v� gÞ��eT1 
 (41c)

N2 ¼ Re1 R �
�

aTe1 þ f a
m

� �
þ 1

m

∂fa
∂vBa

�
vBa
�� �� �
(41d)

Theorem 5. The determinant of N defined in (41) is
calculated as

detðNÞ ¼ ρSV 2

2m

∂FðαÞ
∂α

��zfixb × ð _v� gÞ��ψ23 (42)

where

Figure 5. Determination of the vehicle body Y-axis yb (or body Z-
axis zb) under two singular conditions: (a) kvak = 0 (e.g., near
hovering flights) and (b) γ = 0 (e.g., vertical takeoff or landing). In
both figures, the green plane denotes the plane of _v� g and zfixb . In
(a), the red circular plane perpendicular to xb denotes all possible
directions of zb. To minimize the yaw effort, zb should be the
intersecting line of the green and red plane. In (b), the blue disk
denotes all possible directions of xb. For each direction of xb, zb
could further rotate along xb freely. To minimize the yaw effort,
both xb and zb should be within the green plane.
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ψ23 ¼ k _v� gkcosðγ� αÞ � ρSV 2

2m

∂cy
∂β

cos α (43)

Proof. The proof is given in Appendix F.1.
It is seen in (33) that three possible cases making N

singular, ∂F(α)/α = 0,
���zfixb × ð _v� gÞ

��� ¼ 0, or ψ23 = 0. As
the discussion to Theorem 3, since the angle of attack α is
solved from F(α) = 0, the former condition requires F(α) to
pass through zero with a zero slope, which rarely occurs for
actual aerodynamic configuration cz(α, β). For the second

condition
���zfixb × ð _v� gÞ

��� ¼ 0, since the current singularity

case occurred at the vertical ascending or descending flights,
the thrust should provide the major special acceleration
_v� g. Since the thrust is aligned with body X-axis, the
direction _v� g should be most similar to xfixb , not zfixb , which

rules out the condition
���zfixb × ð _v� gÞ

��� ¼ 0. For the third

condition ψ23 = 0, it requires a special ∂cy(α, β)/∂β|β=0 that
satisfies both of F(α) = 0 and (43), which generally does not
hold in actual aerodynamic configurations. Therefore, the
matrix N is non-singular in practice.

Finally, the angular acceleration and control moment are
also solved from (31) and (32), but the derivatives _h and _N
are recalculated in Appendix F.2.

Remark 3. Singularity conditions kvak = 0 and γ = 0 are
resolved in a unified manner of assigning zb closest to a
fixed direction zfixb , which is equivalent to fixing the yaw
angle. If the singularity conditions are caused by vehicles
at low speed vertical flights (e.g., hovering, vertical take-
off, and landing), such fixing of yaw angle is unnec-
essary. For example, an extra yaw angle can be specified
by assigning zfixb , to achieve sensor-pointing and side-
ways maneuvering.

4.4. Differential flatness transform

In this section, we present a complete differential flatness
transform that maps a flat-output trajectory to a state–input
trajectory, based on the flatness functions in Section 4.2 with
treatments for singularity conditions presented in Section
4.3. Since the flatness functions and singularity treatments
are all based on va, the airspeed, they could naturally in-
corporate the wind speed w into the inertial speed v. In
practice, we compute the airspeed as va ¼ v� w, where w
is a surrogate wind speed to be compensated. In case of full
wind speed compensation, we set w ¼ w or else w ¼ 0.

Combining all elements above, the complete differential
flatness transform can be obtained as shown in Algorithm 1.
With the transform, any flat-output trajectories can be
mapped to the system state xfull and control input ufull as
below:

xfull ¼ X full p
0 : 3ð Þ� �

, ufull ¼ U full p
1 : 4ð Þ� �

(44)

where X fullðpð0 : 3ÞÞ denotes the state flatness function of the
flat output and its derivatives up to the third order and

U fullðpð1 : 4ÞÞ denotes the input flatness function of the flat-
output derivatives up to the fourth order.

5. System overview

In this section, we present the entire framework of trajectory
generation and tracking control for aggressive flights based
on the fundamental differential flatness of the tail-sitter
vehicle presented previously.

5.1. System reduction

The full system presented in (1) is of dimension 12,
comprising the vehicle position, velocity, attitude, and
angular velocity. Note that the system has a cascaded
structure, where the input torque τ solely affects the angular
velocity, and then the angular velocity determines the at-
titude, hence the velocity and position of the vehicle. En-
abled by this cascaded dynamics, we propose to control the
angular velocity dynamics (1d) separately (referred to as the
“low-level control”). In the low-level control, the Coriolis
term ω ×Jω and aerodynamic moment Ma can be com-
pensated in a feed-forward way, while the remaining dy-
namics are first-order linear systems that can be controlled
by linear feedback controller (e.g., PID controller). More
systematic and advanced control techniques could also be
deployed, such as μ-synthesis (Noormohammadi-Asl et al.,
2020), H∞ loop shaping (Li et al., 2020b), and Notch filters
Xu et al. (2019a), to improve the controller bandwidth and
robustness to model uncertainties (e.g., unknown flexible
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modes) and possible vibrations. Details of our low-level
controller are shown in Section 8.1.

With a well-designed low-level controller, we assume
that the vehicle angular velocity can be instantaneously
achieved; hence, it can be viewed as the control input to the
rest vehicle dynamics consisting of (1a)–(1c) (the “high-
level system”). As a result, the state and input of the high-
level system are

x ¼ p v Rð Þ (45a)

u ¼ aT ωð Þ (45b)

which are subject to the following system model

_x¼ f ðx,uÞ¼

_p¼ v,

_v¼ gþaTRe1þ 1

m
Rfa

_R¼RPωR

8>>><
>>>: (46)

Since the state in (46) is a reduced set of the original one
in (1), the reduced system is still differentially flat. Spe-
cifically, the state and input of the high-level system can be
written as

x ¼ X p 0 : 2ð Þ� �
, u ¼ U p 1 : 3ð Þ� �

(47)

where Xð�Þ and Uð�Þ are subsets of X fullð�Þ and U fullð�Þ from
(44), respectively, and the corresponding state–input tra-
jectory (x, u) will satisfy the high-level system model (46)
subject to the surrogate wind speed w. The high-level
system in (46) is of lower dimension and will be used
for our trajectory planning and tracking control.

This system reduction presented above has both ad-
vantages and disadvantages. One advantage is the reduction
of computation complexity in trajectory generation,
avoiding the cumbersome derivative of moment τ with
respect to the flat-output and the knowledge of dynamic
parameters. Another advantage is decoupling the low-level
angular velocity control, which is highly related to the
vehicle dynamics (e.g., flexible modes and motor delay),
from the high-level system planning and tracking control. A
disadvantage arises that the original dynamical feasibility

(i.e., thrust and moment) is approximated as constraints on
inputs of the reduced high-level system (i.e., thrust and
angular velocity). This approximation becomes less accu-
rate when the vehicle is maneuvering with rapidly varying
angular velocity that necessitates large control moment.
Despite the rough approximation, practical quadrotor ap-
plications in drone racing (Romero et al., 2022) and aer-
obatics (Kaufmann et al., 2020; Lu et al., 2023) demonstrate
that the feasibility can be sufficiently guaranteed by con-
straining inputs of the reduced system in most cases.

5.2. System framework

With the system reduction above, the overview of our
proposed approach is shown in Figure 6. A flat-output
trajectory up to the third-order smoothness (i.e., pð0 : 3Þd ) is
planned offline for the high-level system by a trajectory
generation module (Section 6). For online trajectory
tracking, we propose a two-stage control strategy. The first
stage is differential flatness transform (Section 4.4) that
maps the flat-out trajectory to the desired state and input
trajectory xd, ud. This transform also incorporates envi-
ronment wind (if enabled) and fixes the singularity con-
ditions presented in Section 4.3. The computed state–input
trajectories are then tracked in the second stage by a unified
global on-manifold MPC, which computes the optimal
control inputs aTcmd and ωcmd (Section 7). These commands
are then sent as reference to the low-level controller.

6. Trajectory generation

Since the vehicle dynamics is differentially flat in coordi-
nated flight as proved in Section 4, all states and inputs can
be expressed by flatness functions of the flat output and its
derivatives. As a result, the trajectory generation problem
reduces to low-dimensional algebra in the flat-output space
(i.e., the vehicle position), without any integration of the
under-actuated system dynamics in (46). We parameterize
the vehicle position as polynomials (Bry et al., 2015;
Mueller et al., 2015; Ding et al., 2019) and minimize the
flight time and control efforts computed from the flatness
functions (47), subject to necessary constraints.

Figure 6. System overview.
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6.1. Trajectory optimization

We formulate the trajectory planning as an optimization
problem that finds a dynamically feasible, smooth trajectory
pðtÞ :R2 ½0, Tf �1R

3 with the minimum flight time Tf,
control effort u, and passing through a sequence of way-
points Q = (q0, … qM). The purpose of waypoints is two-
fold: (1) it could be used to obtain a collision-free trajectory
when using with a front-end flight corridor (e.g., Liu et al.
(2017); Gao et al. (2019)); and (2) specifying the location of
the waypoints could change the shape of the flight trajec-
tory, so that the desired aerobatic flight trajectories can be
obtained. Given the initial state s0, terminal state sf, and
waypoints Q, the trajectory optimization is formulated as
follows:

min
pðtÞ,Tf

Z Tf

0

��u��2
W
dt þ ρTf (48a)

s:t: xðtÞ ¼ X�pð0 : 2ÞðtÞ�, uðtÞ ¼ U�pð1 : 3ÞðtÞ� (48b)

pð0 : 3Þð0Þ ¼ s0, pð0 : 3Þ�Tf

� ¼ sf (48c)

p
�
tqi
� ¼ qi, 0 ≤ tq0 </< tqM ≤Tf (48d)

xðtÞ 2X, uðtÞ 2U (48e)

SðxÞ ≥ ϵ (48f)

whereW2R
4×4 is a positive diagonal matrix penalizing the

total control effort and ρ > 0 is the flight time penalty. X
denotes the kinodynamic constraint that ensures the vehicle
to operate within a safe workspace. The state constraint
(48e) in this paper is the velocity condition

kvðtÞk ≤ vmax (49)

where vmax is the maximum velocity for safe flight. U ¼
fu2R

4j umin ≤ u ≤ umaxg is the boundary of the system
inputs (i.e., the thrust acceleration aT and angular velocity
ω). SðxÞ denotes the singularity condition. Among the three
singularity sub-conditions in Section 4.3, the conditions
kvak < vmin and |γ| < γmin have been well treated, hence SðxÞ
needs only to consider the first sub-condition:

SðxÞ ¼ k _v� gk2 ≥ ϵ2 (50)

where ϵ is a small positive value for numerical stability on
implementation (ϵ = 0.1 m/s2 in this paper).

The optimization problem in (48) optimizes both the
flat-output trajectory p(t) and the flight time Tf, to
minimize the total control efforts and time in (48a). The
minimization of control efforts tends to find smooth
trajectories that are easier to track, and the minimization
of total time Tf tends to produce high-speed trajectories.
Hence, the optimization (48) promises both trajectory
smoothness and agility. The system state and control
input in (48b) are characterized as the flatness functions

that explicitly exploit the vehicle dynamic and kinematic
models. The initial and terminal conditions of the tra-
jectory are specified in (48c). The dynamical feasibility
which indicates the actuation capability of the aircraft (or
the tracking capability of the low-level control system) is
guaranteed by the boundary constraints in (48e). The
collision-free and the shape constraints of the trajectory
could be achieved by satisfying the waypoint constraints
in (48d). Finally, singularity conditions are incorporated
into the constraint in (48f).

6.2. Trajectory optimization solving

The trajectory optimization (48) is a nonlinear constrained
optimization problem. We leverage a state-of-the-art flight
trajectory planning framework, MINCO (Wang et al.,
2022), to parameterize and solve the trajectory. Referring
to Wang et al. (2022), we insert N free control points di ¼
ðdi1,…,diNÞ 2R

N×3 between each two consecutive way-
points qi, qi+1 and create a waypoint sequence

r ¼ ðq0,d0,q1,…,qM�1,dM�1,qM Þ 2R
ðMðNþ1Þþ1Þ×3. The

corresponding passing time for the waypoint sequence is

T ¼ ½tq0, td01,…, td0N , tq1,…, tqM � 2R
MðNþ1Þþ1. Then we

characterize the trajectory by a multi-stage polynomial
trajectory, where a 7th-order polynomial trajectory with C4

continuity is used to connect two consecutive points rj, rj+1
2 r at their respective passing time Tj, Tj+1 2 T. The entire
trajectory is therefore uniquely determined by all points r
and respective passing time T, having the endpoint con-
straint (48c) and waypoint constraint (48d) naturally sat-
isfied. To deal with remaining boundary constraints (48e)
and the singularity condition (48f), we relax these con-
straints to soft penalties in the objective function, hence
transforming the constrained nonlinear optimization (48)
into an unconstrained nonlinear optimization problem. The
decision variables of the resultant optimization problem
consist of control points D ¼ ðd0,…,dM�1Þ 2R

MN×3 and
passing timeT, which are solved by a quasi-Newton method
(Wang et al., 2022).

To solve the unconstrained nonlinear optimization with a
quasi-Newton method, gradients of the objective and
constraints with respect to the decision variablesD andTare
needed. The gradients of flat-output (i.e., ∂p(1:3)(t)/∂D and
∂p(1:3)(t)/∂T) have been derived in detail in Wang et al.
(2022), with which the gradients of the control input u and
singularity condition in (48f) can be calculated by the chain
rule:

∂SðxÞ
∂D

¼ 2ð _v� gÞT ∂ _v
∂D

(51a)

∂SðxÞ
∂T

¼ 2ð _v� gÞT ∂ _v
∂T

(51b)

∂uðtÞ
∂D

¼ ∂Uðpð1 : 3ÞðtÞ�
∂pð1 : 3ÞðtÞ

∂pð1 : 3ÞðtÞ
∂D

(51c)
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∂uðtÞ
∂T

¼ ∂Uðpð1 : 3ÞðtÞ�
∂pð1 : 3ÞðtÞ

∂pð1 : 3ÞðtÞ
∂T

(51d)

where ∂Uðpð1 : 3ÞðtÞÞ=∂pð1 : 3ÞðtÞ are gradients of the flatness
functions in Section 4. The calculation is provided in
Appendix G.

7. Global control for trajectory tracking

In this section, we develop a global tracking controller that
allows a tail-sitter to accurately follow aggressive reference
trajectories in real-world environments. Unlike conven-
tional tail-sitter controllers operating in separate flight
modes or existing global controllers considering a simpli-
fied aerodynamic model, the proposed global controller
fully exploits the vehicle aerodynamics, contributing to
accurate, agile flights within the entire envelope without
encountering control switching or singularity.

7.1. The error-state system

The goal of the tracking controller is to drive the vehicle
state to follow the desired reference state trajectory xd,
which is computed from the trajectory planned in Section
6 via the flatness function (47). Equivalently, the error
between the actual and reference state trajectory should
converge to zero. Therefore, we only need to control the
error state δx.

7.1.1. Definition of the error state. Considering the tail-
sitter model in (46), the system state evolves on a compound
manifold below

M ¼ R
3 ×R3 × SO 3ð Þ, dim Mð Þ ¼ 9 (52)

x ¼
p
v
R

0
@

1
A2M, u ¼ aT

ω

� �
2R

4 (53)

We assume that the trajectory planner generates a full
reference trajectory, including the state

xd ¼ ðpd vd RdÞ 2M and input ud ¼
	
aTd ωT

d


T 2R
4.

Note that the state–input trajectory (xd, ud) satisfies the
model (46) subject to the surrogate wind speed w.

Defining the error between the actual state x and the
reference one xd, both lie on the state manifold M, is not
trivial. We adopt the definition in our prior work (Lu et al.,
2023), which defines the error state in the local homeo-
morphic space (an open set in Euclidean space) around each
point xd. This particular error definition on manifold is
denoted as> (Hertzberg et al. 2013) and is detailed below:

δxbxd>x ¼ 	 δpTδvTδRT

T 2R

9 (54a)

δpbpd>p ¼ pd � p2R
3 (54b)

δvbvd>v ¼ vd � v2R
3 (54c)

δθbRd>R ¼ Log
�
RTRd

�2R
3 (54d)

where Log(�) is the logarithmic map of the manifold SO(3)
and also the inverse of the exponential map Exp(�). The
control inputs are in the Euclidean space, so their errors can
be defined directly:

δubud � u ¼ 	 δaTδωT

T 2R

4 (55a)

δaTbaTd � aT 2R (55b)

δωbωd � ω2R
3 (55c)

7.1.2. The error-state system dynamics. To control the error
state δx (54) to converge to zero, we need to obtain its
dynamic model. To do so, we take the derivative of the error
state with respect to time.

Theorem 6. Given the error state defined in (54), where
the actual trajectory (x, u) satisfies (46) with the actual
wind speed w and the reference trajectory (xd, ud) sat-
isfies (46) with the surrogate wind speed w, then the
dynamics of the error-state system are as follows:

δx ¼ δ _pT δ _vT δθ
T

h iT
(56a)

δ _p¼ δv (56b)

δ _v ¼
�
aTdRde1 þ 1

m
Rdfad

�
�
�
aTRe1 þ 1

m
Rfa

�
(56c)

δ _θ ¼ AT ðδθÞ��RT
dRωþ ωd

�
(56d)

where fad and fa are the aerodynamic forces in terms of the
desired and actual state, respectively

fad ¼ f a vBad

� �
, vBad ¼ RT

d vd � wð Þ (57a)

fa ¼ fa vBa
� �

, vBa ¼ R v� wð Þ (57b)

A(�) denotes the Jacobian of the exponential coordinates
of SO(3) (Bullo and Murray, 1995):

AðδθÞ¼I3þ
�
1�coskδθk

kδθk
�

PδθR
kδθk

þ
�
1�sinkδθk

kδθk
�

PδθR
2

kδθk2
(58)

Proof. The proof is given in Appendix H.

Lemma 1. The first-order linearization of the error-state
dynamics given in (56) is as follows:

δ _x ¼ Fxδxþ Fuδuþ Fwδw (59)

where
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Fx ¼
0 I3 0
0 Mv MR

0 0 �bωdc

2
4

3
5, Fu ¼

0 0
MT 0
0 I3

2
4

3
5, Fw ¼

0
�Mv

0

2
4

3
5

(60a)

MT ¼ Rde1 (60b)

Mv ¼ 1

m
Rd

∂fad
∂vBad

RT
d (60c)

MR¼ Rd

 
�aTdbe1c �

�
f ad
m


þ ∂fad
∂vBad

�
vBad
m

!
(60d)

∂f ad
∂vBad

¼ ∂f a
∂vBa

����
vBad

ðsee Equationð26ÞÞ (60e)

δw ¼ w� w (60f)

Proof. The proof is given in Appendix I.

Remark 4. The error system in (59) is valid for any
desired state–input trajectory (xd, ud). This is because the
system matrix Fx, input matrix Fu, and Fw can always be
calculated properly without encountering any singular-
ities at any desired state Rd and vd. For the calculation of
∂fad=∂v

B
ad
, as shown in (26), it involves the calculation of

∂c/∂α and ∂c/∂β, which are invalid when vad ¼ 0. For-
tunately, regardless of the values of ∂c/∂α and ∂c/∂β, we
always have lim

va → 0
∂fad=∂v

B
ad

¼ 0 according to (26).

Consequently, the linearized error-state system in (59)
has no singularities within the entire flight envelope.

7.2. On-manifold MPC for trajectory tracking

With the error-state dynamics (59), which is a standard
linear time varying system, an MPC that minimizes the state
δx and δu is utilized for trajectory tracking. Setting the
unknown disturbance δw in (59) to zero, the MPC is an
optimization problem as follows:

δu* ¼ argmin
δuk

XN�1

k¼0

���δxk���2
Qk

þ
���δuk���2

Rk

� �
þ
���δxN��2PN

s:t: δxkþ1 ¼ I9 þ ΔtFxkð Þδxk þ ΔtFukδuk
δx0 ¼ δxinit
δuk 2 δUk, k ¼ 0, …, N� 1

(61)

where N is the predictive horizon and Qk, Rk, PN are
positive-definite diagonal matrices, denoting the penalty of
the stage state, stage input, and terminal state, respectively.
Uk ¼ fδu2R

mjumin � udk ≤ δu ≤ umax � udkg are the con-
straints for the input error that is derived from the actual
input constraints umin ≤ uk ≤ umax. The optimization in (61)
is a standard quadratic programming (QP) problem, which

can be solved efficiently by existing QP solvers. Finally, the
optimal control command at the current step is

ucmd ¼ ud0 þ δu0* (62)

Remark 5. The MPC in (61) is minimally parameterized
and singularity-free. The minimal parameterization results
from the use of error state δx in the controlled system (59),
which parameterizes the original state x on the state
manifoldM in its homeomorphic space. This space, being
a normal Euclidean space, has the same dimension (i.e., 9)
as the state manifold M. The resultant MPC formulation
(61) does not have any redundant parameters when com-
pared with existing quaternion-based MPC for UAV
control (Falanga et al., 2018; Sun et al., 2022). The
singularity-free property of the MPC is two-fold. First, the
MPC is not singular to the flight trajectory because the error
system (59) is always valid in the entire flight envelope.
Second, theMPC is not singular to the parameterization δx.
Common minimal parameterization of manifolds, such as
Euler angles (Kamel et al., 2017; Nguyen et al., 2021),
parameterizes the manifold with respect to a fixed point on
the manifold, and the resultant parameterization is singular
at certain configurations. In contrast, our error state δx
parameterizes the state manifold with respect to each point
on the reference trajectory (as opposed to a fixed point). If
the feedbackMPC controller is stable (as it always needs to
be), the error state is stabilized around zero and hence
avoids the singularity effectively. The minimally parame-
terized yet singularity-free nature of our MPC avoids any
switching in parameterization or control scheme and
eventually leads to a global trajectory tracking controller.

Remark 6. The MPC in (61) is a model-based controller,
where the computation ofFx andFu requires the knowledge
of the aerodynamic model fa and its derivative (see (1)).
This enables the MPC to exploit a high-fidelity aerody-
namic model of the vehicle to achieve high-accuracy
tracking control while effectively admitting practical
constraints, such as the input saturation.

Remark 7. The error-state dynamics formally derived in
Section. 7.1.2 are globally equivalent to the original system.
This equivalence allows to treat the tail-sitter as a formal
nonlinear system. The system is further linearized along the
reference state–input trajectory at each point, leading to a
linear time-varying system in (59). The consequent MPC
design is standard, and its convergence analysis can be
studied using established techniques in existing literature
like Mayne et al. (2000) and hence will not be further
discussed in the rest of paper.

8. Real-world experimental results

In this section, we validate the key ideas of the approach
presented in this paper via real-world experiments on a
quadrotor tail-sitter UAV. The algorithms of trajectory
generation, flatness transform, and global tracking
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controller are implemented to enable the vehicle to perform
aggressive agile flights. Extensive challenging indoor and
outdoor field tests are demonstrated, including agile SE(3)
flight through consecutive narrow windows, typical tail-
sitter maneuvers (transition, level flight, and loiter), and
extremely aggressive aerobatics (Wingover, Loop, Vertical
Eight, Cuban Eight, and their combo). All experiments are
successfully tested at least three times for initial verification,
data collection, and video record.

8.1. Tail-sitter UAV platform

We validate the presented algorithms on a quadrotor tail-
sitter prototype, named “Hong Hu,” based on our previous
airframe design (Gu et al., 2018). As shown in Figure 7,
Hong Hu is manufactured out of carbon fiber, weighs 2.4 kg,
and has a wingspan of 90 cm. The cruise airspeed is 18 m/s.
It is powered by four T-MOTOR1 MN5006 KV450 motors
and APC2 13 × 10 propellers, achieving a hovering throttle
at 43% of the full throttle. The tail-sitter UAV is equipped
with an onboard computer DJI Manifold 2-C3(1.8 GHz
quad-core Intel i7 CPU) and an autopilot PX4 Mini4 with a
global positioning system (GPS) receiver module. A uni-
axial airspeed sensor is mounted on the nose of the airframe.
An action camera DJI Action 25 is fixed on a carbon rod for
first-person-view (FPV) video capturing.

The presented algorithms of trajectory generation and
high-level tracking control (i.e., MPC) are implemented on
the onboard computer and communicated via the Robot

Operating System (ROS). An open-source QP solver OOQP
(Gertz and Wright, 2003) is deployed to solve the MPC
problem in (61) at 100 Hz. The predictive horizon is set to
12 in all experiments, and the MPC takes 0.85 ms in average
to compute the optimal commands of thrust acceleration aT
and angular velocity ω, which are then sent to the autopilot
PX4 Mini via MAVROS6. In the autopilot, the thrust ac-
celeration command aT is mapped to the throttle command
by thr = kTaT, where the coefficient kT is computed as thrh/
9.81 with thrh being the throttle at hovering. The angular
velocity command ω is tracked by three PID controllers,
each compares the respective angular velocity command
with its onboard IMU measurements and calculates a
normalized control torque τ at 400 Hz. The three PID
controllers, one for each channel, are decoupled, where the
coupled Coriolis term ω ×Jω and aerodynamic momentMa

are all viewed as unknown disturbances and hence ignored
in the controller. In the experiments, we found the vehicle
exhibited a severe vibration caused by the propeller rotation
and attenuate this vibration by a Notch filter added on each
PEED controller (Xu et al., 2019a). The throttle and nor-
malized torque are finally mixed into the four-motor pulse-
width modulation (PWM) commands using the standard
quadrotor configuration. The vehicle state is estimated by an
extended Kalman Filter (EKF) also running on the autopilot.
External position and heading measurements are obtained
by a motion capture system for indoor experiments or the
GPS module with magnetometer for outdoor experiments.

The aerodynamic model is identified by wind tunnel tests
in our previous work (Lyu et al., 2018a) and refined by real
flight tests due to the new propulsion system and
manufacturing. For model refining, we conduct a series of
normal and inverted level flight tests in different speeds (and
angle of attack) and collect the flight data of motor PWM,
vehicle velocity, and attitude. To ensure the sideslip angle is
zero during the flights, we measure the wind speed using an
anemometer and manually set the vehicle heading along the
wind direction prior to each level or inverted flights. We
calculate the rotor speed from the motor PWM, the incoming
airflow consisting of the measured wind speed and the ve-
hicle’s inertial speed, and then obtain the total thrust ac-
cording to the open-source APC propeller model7. Excluding

Figure 8. Sizes of the quadrotor tail-sitter UAV (a) and the narrow window (b).

Figure 7. Our quadrotor tail-sitter UAV prototype: Hong Hu.
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the propeller thrusts leads to the lift and drag forces exerted
on the vehicle and hence the values of CL and CD at different
angles of attack α. We conduct the flight tests from low speed
to high speed and iteratively refine the aerodynamic model, to
achieve stable flights. For the side force coefficientCY, we use
the model of Lyu et al. (2018a) without any modification.

In all outdoor experiments without otherwise specified, the
wind speed is estimated and compensated in the differential
flatness transform (by setting the surrogate wind w). Refer-
ring to Johansen et al. (2015), only the wind speed com-
ponents in the world frame X-Yplane is estimated by an EKF
that propagates a constant wind speed model based on the
airspeed sensor measurement and the vehicle inertial velocity
and attitude. To avoid unstable wind speed estimation due to
degraded airspeed measurements at low flight speeds, the

estimated wind speed is compensated in the differential
flatness transform only when the airspeed magnitude kvak >
5m/s.When the vehicle speed is below this threshold or in all
indoor experiments, no wind speed is compensated in the
differential flatness transform (i.e., setting w ¼ 0). In all
results that follow, the angle of attack and side slip angle are
computed based on w used in the flatness transform, re-
gardless of the actually estimated wind speed.

8.2. SE(3) flight through narrow windows

Flying through narrow windows is a challenging but po-
tentially worthwhile scenario that a UAV can navigate in
obstacle-dense environments, such as searching through
thick forest or collapsed buildings after disasters. The main

Figure 9. Traverse trajectory is divided into two pieces: the first one (the green line) connects the start position (a) and the center of the
window (b), and the second one (the yellow line) connects B and the target position. (c) The specified traverse velocity vt is
perpendicular to the window plane. The body axis yb is along the long side of the window, and the angle between xb and vt is specified as
θ = 30°.

Figure 10. Snapshot sequences of agile tail-sitter flight through narrow windows. (a) Flying through a single window in 10 m/s. (b)
Flying through two consecutive windows in 8 m/s.
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challenge of the problem is that the vehicle can fly
through the narrow window only when its body is aligned
with the window orientation to fit the limited traversing
space as shown in Figure 8. This task requires the UAV to
execute a precise, aggressive full body motion on SE(3)
(i.e., SE(3) flight). For the sake of flight agility and
tracking accuracy, dynamical feasibility of the trajectory
should be guaranteed rigorously in planning, such that the
tracking error can be reduced when the vehicle executes
the maneuver.

To generate a collision-free and dynamically feasible
trajectory through a narrow window, we divide the tra-
jectory into two pieces (i.e., before and after passing
through the window) and optimize them by (48) separately.
As shown in Figure 9, the first trajectory (the green line)
connects the UAV start position to a traversing position
fixed at the center of the window, and the second trajectory
(the yellow line) connects the traversing position to the
target position. To determine the boundary conditions for
these two trajectories, the speed, acceleration, and jerk at
the start and target positions are all set to zeros
(i.e., stationary hovering). For the traversing position, the
position is the center of the window and velocity vt is
normal to the window plane with magnitude manually
specified. To determine the acceleration at the traversing
position, we specify the body Y-axis to be along the
window long edge and set the body X-axis to form a θ =
30° angle with the traversing velocity vt (i.e., AoA is α =
30° at the traversing position). Then, we choose the thrust
aT by minimizing the total acceleration at at the traversing
position:

min
aT

katk ¼ min
aT
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(63)

Taking the thrust constraint into consideration, (63) leads
to a constrained linear optimization:

a*T ¼ argmin
aT

����aT þ eT1 RTgþ 1

m
fa

� �����
s:t: aTmin ≤ aT ≤ aTmax

(64)

where aTmin and aTmax are the boundaries of thrust acceler-
ation. Then, the traversing acceleration can be obtained by
substituting the optimal thrust acceleration and the deter-
mined attitude into the translational dynamics in (1b). Fi-
nally, the traversing jerk is set to zeros for simplicity.

We validate the algorithms in real-world experiments as
shown in Figure 10. The kinodynamic and control input
constraints of the planner are vmax = 12 m/s and ωmax =
200 deg./s. To increase the tracking accuracy for position
and attitude, which is crucial for the UAV to pass the
window, parameters of the MPC are set asQk = diag([1800,
1800, 1800, 5, 5, 5, 50, 50, 50]), Rk = diag([0.3, 0.4 0.4,
0.4]), and PN = Qk. All poses of the windows and UAVare
measured by a motion capture system. The flying volume is
about 15 × 15×4 m3.

Figure 11. Flight data of the SE(3) flight through a single windowwith roll 20° and traversing speed 10 m/s: (a) position, (b) flight speed,
(c) angle of attack, (d) thrust acceleration, (e) position tracking errors, (f) attitude in Euler angles, (g) sideslip angle, and (h) angular
velocity. In all subplots where applicable, the solid and dashed lines denote the measurement and reference, respectively. For the thrust
acceleration, the measurement is obtained from the accelerometer X-axis. For the angle of attack and sideslip angle, their measurements
are displayed only when the airspeed exceeds 1m/s due to the unstable airspeed measurements at low speeds. The vertical dotted lines
denote the moment the vehicle passes the window, and the shaded areas in (d) and (h) denote the feasible region of the actuation in
trajectory optimization (48).
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In the first scenario, the tail-sitter performs aggressive
SE(3) flights to fly through a single window. Figures 10(a)
and 11, respectively, show the snapshot sequence and ex-
perimental data of a successful flight passing through a
window with roll angle f = 20° and in a traversing speed of
kvtk = 10m/s. As can be seen in Figure 11(a) and (b), to fly
through the window with the specified speed, the UAVmust
accelerate from stationary hovering to the traversing speed
(i.e., 10 m/s) in a time less than 3.4 s and a space within 3.6 ×
8.1×1 m3. To achieve this, the UAV performs transition and
a banked turn simultaneously (see Figure 11(f)). In fact, the
planner and controller are not even aware of the transition
but treat the entire flights uniformly. Then, the UAV tra-
verses the window with the required pose and velocity at
3.36 s (the vertical black dotted line) and finally recovers to
the hovering status again within a very limited flight space.
During the flight, the angle of attack varies up to 113° in
merely 2 seconds (see Figure 11(c)), indicating a large
envelope of angle of attack. Despite this, the overall position
error as shown in Figure 11(e) is less than 0.3 m and the
sideslip angle as shown in Figure 11(g) is well stabilized
around zero. The seemly large sideslip angle at the be-
ginning and end of the flight is due to the unstable airspeed
measurements at very low speeds. Figure 11(d) and (h)
show that the trajectory planner effectively bounds the
thrust acceleration and angular velocity of the reference
trajectory within the nominal actuator constraints (the
shaded area).

In the second scenario, the tail-sitter performs more
aggressive SE(3) flights to fly through two consecutive
windows. Figures 10(b) and 12, respectively, show the
snapshot sequence and experimental data of a successful

flight with window roll angles �20° and 20° and traversing
speeds both at 8m/s. As shown in Figures 10(b) and 12(a),
(b), and (f), the UAV traverses the first window at 1.8 s and
then immediately pulls up the pitch angle, which slows
down the speed, to gain sufficient lift maintaining the
height. After this, the UAV pitches down and accelerates
again to fly through the second window safely at 2.79 s. The
fact that the maneuver in this scenario is more aggressive
than the former is also shown in Figure 12(d) and (h) where
the IMU measurements of thrust acceleration and angular
velocity reach 20 m/s2 and 400 deg./s, respectively. The
position tracking error in Figure 12(e) is consequently
larger, but the overall position error remains less than 0.3 m.
Other phenomena, such as the large envelope of angle of
attack, simultaneous bank turn and transition, and stabili-
zation of the sideslip angles, are all similar to the previous
experiment.

To provide more convincing results, we conduct two
test groups of experiments demonstrating the flights
through single and double windows, respectively. The
first group consists of six different flight tests with a
window roll angle f 2 {0°, 20°, 40°} and a traversing
speed kvk 2 {3, 5, 8, 10} m/s. The second group consists
of three SE(3) flights with window angle combinations
drawn from {�20°, 0°, 20°, 40°} and a traversing speed
of 8 m/s. All nine experiments are successfully con-
ducted with results summarized in Table 2. The first
group results demonstrate a sufficiently high control
accuracy to avoid collision (i.e., the maximum average
position and attitude error are 13.5 cm and 6.4°, re-
spectively). It also shows that the proposed trajec-
tory generation in coordinated flight is applicable to

Figure 12. Flight data of the SE(3) flight through two consecutive windows with roll angles 20° and�20° and traversing speeds both at
8 m/s: (a) position, (b) flight speed, (c) angle of attack, (d) thrust acceleration, (e) position tracking errors, (f) attitude in Euler angles, (g)
sideslip angle, and (h) angular velocity. In all subplots where applicable, the solid and dashed lines denote the measurement and
reference, respectively. For the thrust acceleration, the measurement is obtained from the accelerometer X-axis. For the angle of attack and
sideslip angle, their measurements are displayed only when the airspeed exceeds 1m/s due to the unstable airspeed measurements at
low speeds. The vertical dotted lines denote the moments when the vehicle passes the windows, and the shaded areas in (d) and (h) denote
the feasible region of the actuation in trajectory optimization (48).
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low-speed SE(3) flights (down to 3 m/s). For the second
group results, the pose tracking error slightly increases at
the second window due to the dramatic attitude and
velocity variations as mentioned before but still small
enough for the UAV to pass through the window. To sum
up, the various agile flights through narrow windows
demonstrate that the proposed trajectory generation and
control framework is capable to execute accurate SE(3)
flights, which shows a promising application to ag-
gressive autonomous flight with obstacle avoidance in
cluttered environments. Readers are encouraged to watch

the accompanying videos for better visualization of the
experiments.

8.3. Typical maneuvers in field environments

In this task, we examine the effectiveness and performance of
the proposed algorithms for typical maneuvers in field envi-
ronments. We test a straight-line maneuver (including hov-
ering, transition, and level flight) and loiter flights with speed
ranging from 5 m/s to 20 m/s and make comparisons to
conventional tail-sitter controllers (with details supplied later).
We reserve the same parameters of the planner and controller,
except decreasing theMPC position penalty (i.e., the first three
diagonal elements ofQk) to [1200, 1200, 1200] to increase the
robustness to uncertainties like unmeasured wind disturbance
and noisy GPS measurement in outdoor environments.

8.3.1. Straight-line flight. Transition and level flights are
two crucial maneuvers for tail-sitter UAVs and are com-
monly tested for tail-sitter controllers. We demonstrate the
proposed framework on these maneuvers via a forward
flight trajectory, which involves three maneuvers: forward
transition, level flight, and backward transition (see
Figure 13(a)), and an inverted flight trajectory, which
involves another three maneuvers: inverted forward

Figure 13. Forward flight of the straight-line path in 18 m/s: (a) trajectory illustration and (b) images from the FPV camera. Labels A–F
denote different flight phases of the vehicle: (a) hovering, (b) forward transition, (c) and (d) level flight, (e) backward transition, and (f)
hovering.

Figure 14. Inverted flight of the straight-line path in 18 m/s: (a) trajectory illustration and (b) images from the FPV camera. Labels A–F
denote different flight phases of the vehicle: (a) hovering, (b) inverted forward transition, (c) and (d) inverted level flight, (e) inverted
backward transition, and (f) hovering.

Table 2. Average Pose Tracking Error of SE(3) Flights.

Roll angle f kvtk (m/s) δpRMS(cm) δθRMS(°)

0° 8 10.8 4.7
20° 8 13.5 6.4
40° 8 9.5 4.0
20° 3 10.7 4.5
20° 5 12.8 5.2
20° 10 9.5 4.0
0° & 20° 8 11.6 6.2
20° & �20° 8 10.0 5.5
40° & 20° 8 12.0 6.6

Lu et al. 21



transition, inverted level flight, and inverted backward
transition (see Figure 14(a). We present the tracking
performance on these trajectories with different level-flight
speeds ranging from 5 m/s to 20 m/s and make compar-
isons against existing works in terms of transition
accuracy.

We design the forward and inverted flight trajectories
along the same straight-line path, where the vehicle first flies
forward along the path to a target position and then flies in
an inverted pose along the same path back to the origin, as
shown in Figure 15. Both forward and inverted flight tra-
jectories have the same level-flight phase, which is man-
ually specified as a constant-velocity trajectory (speed
ranges from 5 m/s to 20 m/s) lasting for 4–5 s. The tra-
jectories from the initial hovering position to the constant-
velocity trajectory and that from the constant-velocity tra-
jectory to the target hovering position are designed by the
proposed trajectory optimization method in (48), for both
forward and inverted trajectories.

Figures 13 and 14 show the 3-D trajectory and FPV
images of the test with level-flight speed of 18 m/s, and the
corresponding flight data are detailed in Figure 15. As
shown in Figure 15, the tail-sitter first performs a forward
transition (phase I) from hovering to level flight with a speed
of 18 m/s (phase II) while the pitch angle decreases from 90°
to 13°. After flying 112 m over 7.7 s, the vehicle performs a
backward transition (phase III) to hovering (phase IV).
Subsequently, the vehicle performs an inverted forward
transition (phase V), where the pitch angle increases from
90° to 146°, reaching the inverted level flight with a speed of
18 m/s (phase VI). Finally, the vehicle performs an inverted
backward transition (phase VII) to return to the initial
hovering position. It is seen that the vehicle feedback tra-
jectory of position, velocity, and pitch angle tracks the
reference state trajectory precisely throughout the flight.

Figure 15(d) shows the position tracking error. As can be
seen, the overall tracking error is 0.13 m in average and
0.52 m at most, which is incredibly small considering that
the flight speed is up to 18 m/s, and the angle of attack varies
over 230° (see Figure 15(c)).

To provide a more convincing result and demonstrate
the effectiveness of the proposed framework in full-
envelope flight, we conduct a group of straight-line
flights with six different level-flight speeds of kvk 2 {5,
8, 12, 15, 18, 20} m/s. The position tracking error in each
flight phase of each flight is statistically analyzed in
Figure 16. As can be seen, the errors at all times in all
36 groups of data across different flight speeds or phases
are less than 0.5 m, showing that the proposed framework
enables a tail-sitter to fly within the whole envelope in high
accuracy. Notably, the tracking error during inverted flight
is as low as 0.2 m. The increased tracking accuracy in the
inverted flight is due to better fitting of the aerodynamic
coefficients in negative AoA regions. It is also noted that
existing methods based on separated trajectory planners
and controllers (Frank et al., 2007; Oosedo et al., 2017;
Lyu et al., 2017b; Xu et al., 2019a) did not demonstrate
such inverted flights because the required AoA is out of the
designed envelope.

Moreover, we make a comparison on the transition ac-
curacy with a traditional linear transition controller (Lyu
et al., 2017b), which is the same strategy used by the au-
topilot PX4. To ensure a fair comparison, we implement
both our MPC and the traditional controller with the same
low-level angular velocity controller, on the same vehicle.
In addition, the linear transition controller is tuned to the
best extent. The cascaded attitude and altitude PID con-
trollers of the linear transition controller are tuned by
Ziegler–Nichols method, while the linear pitch reference is
determined by a transition duration and angle span. The

Figure 15. Flight data of the straight-line flight test consisting of both forward and inverted flights: (a) position, (b) flight speed, (c) angle
of attack, (d) position tracking errors, (e) pitch angle, and (f) sideslip angle. Flight stages from I to VII divided by shaded areas indicate
the (i) forward transition, II. level flight, III. backward transition, IV. hovering, V. inverted forward transition, VI. inverted level flight,
and VII. inverted backward transition. For the angle of attack and sideslip angle, their measurements are displayed only when the airspeed
exceeds 2 m/s due to the unstable airspeed measurements at low speeds. In all subplots where applicable, the solid and dashed lines,
respectively, denote the measurement and reference.
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angle span indicates the pitch change between hovering and
level flight at cruise speed and is obtained as 13° � 90° in
the former straight-line flight experiment (see Figure 15(e)).
The transition duration is initially set to the same transition
time of our method, but it failed the transition flight due to
the too short transition time. Then, we gradually increase the
transition duration until successful flight is achieved. We
iteratively refine the above attitude and altitude controller,
achieving comparable performance demonstrated in exist-
ing research (Oosedo et al., 2017; Lyu et al., 2017b; Xu
et al., 2019a).

Because the linear transition controllers usually focus
on pitch and altitude control, and have no position
control in other directions, we focus on the comparison
of longitudinal state variables only. Figure 17 (1a)–(1c)
shows the comparison in forward transition. Our method
controls the pitch angle to decrease from 90° to 13°
smoothly and speeds up from hovering to 18 m/s in
merely 3 s with altitude error peaking at 0.11 m, while
the linear method has good performance in pitch control
and accelerating but the altitude drops 0.41 m. Similarly,
in backward transition shown in Figure 17 (2a) and (2b),
our method tracks the reference pitch angle smoothly
and has maximum altitude error of 0.52 m only, while
the linear method tracks the linear pitch trajectory with
significant pitch fluctuations and has a large altitude

deviation of 1.35 m. It can be also noticed that our
method pulls up the pitch angle over 120° and then
returns to 90° for fast deceleration as shown in Figure 17
(2b), and the resultant backward transition is 4 s shorter
than the linear method. In this comparison, our model-
based framework shows its advantages in tracking ac-
curacy and flight aggressiveness, which outperforms the
model-free linear transition control.

8.3.2. Loiter flight. Loiter flight is another typical trajectory
that validates the cruise performance of tail-sitters. As
shown in Figure 18, the trajectory consists of three phases:
banked forward transition from hovering to loiter, loiter
flight in constant speed, and banked backward transition
from loiter to hovering. The loiter trajectory is designed in
three steps. The constant-speed circular trajectory is first
determined manually. Then the banked forward transition
trajectory is optimized by (48) with initial condition as the
hovering state and terminal condition as the first point on the
circular trajectory. Similarly, the banked backward transi-
tion trajectory is optimized by (48) to perform a loiter-to-
hovering maneuver.

Figures 18 and 19, respectively, show the trajectory
and flight data in the loiter test with a flight radius of
50 m and speed of 18 m/s. As shown in Figures 18 and
19(b)–(c), after a while of stationary hovering, the

Figure 16. Position tracking error in six different speeds when the tail-sitter flies in different phases of a straight-line path.

Figure 17. Comparison on transition control performance between our presented approach and the linear transition method (Lyu et al.
2017b). (1a)–(1c) are, respectively, the pitch angle, flight speed, and altitude tracking error for the forward transition and (2a) and (2b)
are those for backward transition. The solid and dashed lines in (1a) and (2a), respectively, denote the measurement and reference.
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tail-sitter first performs a coupled roll and pitch rotation
to smoothly transition into the circular trajectory and
similarly transitions out of the circular trajectory with
coupled roll and pitch rotations. Compared to tradi-
tional control methods (Verling et al., 2016; Lyu et al.,
2017b) where a loiter trajectory is separated into a
straight-line transition followed by a bank turn in level
flight, our maneuver is more elegant and time-saving
due to less extra flight distance. It is seen in Figure 19
that during the entire flight, the feedback of position,

velocity, and attitude tracks the reference closely. More
specifically, Figure 19(e) illustrates the position tracking
error, which is less than 0.26 m during the 45-second
constant-speed loiter and slightly increases to 0.42 m and
0.56 m in the two transition phases, respectively.
Moreover, we conduct this test with different loiter
speeds kvk 2 {8, 12, 18} m/s. The tracking error statics of
each phase of the three tests are summarized in Figure 20.
Banked transitions in the largest speed 18 m/s have the
largest worst-case tracking errors (i.e., 0.31 m for the
forward transition and 0.33 m for the backward transi-
tion), while all loiter flights have similarly small errors
less than 0.21 m. The above experimental results dem-
onstrate that the proposed trajectory generation and
tracking control framework promises high-accuracy
flights in real outdoor environments.

In order to demonstrate the effectiveness and significance of
wind speed compensation in the controller, we conduct a loiter
fight in 18m/swithwind speed in theflatness transform enabled
and disabled online. As shown in Figure 21(f), the wind speed is
estimated during the entire flight test, but the control framework

Figure 18. Loiter flight with a flight radius of 50 m and velocity of 18 m/s: (a) trajectory illustration and (b) images from the FPV camera.
Labels A–F denote different states of the vehicle: (a) hovering, (b) banked forward transition, (c) and (d) loiter flight, (e) banked
backward transition, and (f) hovering.

Figure 19. Flight data of the loiter flight in 18 m/s: (a) position, (b)–(d) attitude in Euler angles, (e) position tracking errors, (f) flight
speed, (g) angle of attack, and (h) sideslip angle. Flight stages from I to III divided by shaded areas indicate the banked forward
transition, loiter, and banked backward transition, respectively. For the angle of attack and sideslip angle, their measurements are
displayed only when the airspeed exceeds 2 m/s due to the unstable airspeed measurements at low speeds. In all subplots where
applicable, the solid and dashed lines, respectively, denote the measurement and reference.

Figure 20. Position tracking error in three different phases when
the tail-sitter flies the loiter trajectory in different speeds.
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only compensates the wind speed after 89 s, indicated by
the shaded background. When the wind speed is not
compensated, the reference pitch angle (and angle of at-
tack) maintains at a constant value of 25° due to the
constant loitering speed (see Figure 21(d) and (e)). In
contrast, the actual vehicle pitch angle climbs to about 50°
to increase the lift due to the smaller airspeed when fol-
lowing the wind and drops to around 10° to decrease the
lift due to the larger airspeed when against the wind.
Moreover, due to the uncompensated wind speed, the
vehicle actually does not perform coordinated flight,
causing a side force that is then compensated by the vehicle
roll angles (see Figure 21(a)). Furthermore, the uncom-
pensated wind speed contributes to an extra disturbance as
shown in (59), which causes the control error of the
measured sideslip angle (which is computed without
considering the estimated wind velocity and should be
equal to the reference sideslip angle) to fluctuate between
12.5° and�7° (see Figure 21(b)). On the other hand, when
the estimated wind speed is used in the differential flatness
transform for the calculation of the state–input trajectory
and the subsequent trajectory tracking controller, the
reference pitch angle is recalculated to fluctuate according
to the wind speed, similarly the reference yaw angle is also
adjusted to keep the sideslip angle at zero (i.e., ensuring the
coordinated flight condition). As a result, the control errors
in pitch, sideslip angle, and flight speed are significantly
reduced.

Finally, a comparison between our method and the
total energy control system (TECS) is conducted on the
loiter flight of 18 m/s. As a mature technique for fixed-
wing aircraft flight control, TECS also has been widely
used in tail-sitter level flights. Due to the approximately
linear aerodynamic force in low AoA, TECS employs a
proportional and integral (PI) control scheme to regulate

the airspeed and altitude by controlling the error of the
total energy (i.e., the sum of potential and kinetic energy)
to zero (Lambregts, 1983). We use the TECS im-
plemented in the PX4 autopilot and tune its parameters to
the best extent. Similar to the previous transition control
comparison, both the proposed MPC and TECS utilize the
same low-level controller for tracking the angular ve-
locity command. The inner attitude loop, middle energy
balance loop, and outer total energy loop of the TECS,
which compute the commands for angular velocity, pitch
angle, and thrust, respectively, are tuned in sequence
using the Ziegler–Nichols method. The resulting control
performance achieved in the experiment is on par with
those demonstrated in related works (Lyu et al., 2017b;
Gu et al., 2017). As shown in Figure 22, the vehicle
altitude drops around 1.5 m in average and 2.5 m in
maximum when using TECS for the loiter flight. In
comparison, there is no obvious steady-state error for our
approach, and the maximum altitude error is less than
0.25 m. The results are reasonable since TECS does not

Figure 21. Loiter flight test in 18 m/s with and without wind speed compensation in the controller: (a) roll angle, (b) sideslip angle, (c)
flight speed, (d) pitch angle, (e) angle of attack, and (f) estimated wind speed. In all subplots, the white area denotes the flight when
settingw ¼ 0 in the flatness function (Algorithm 1), while the shaded area denotes the duration when the online-estimated wind speed is
used as thew in the flatness transform. Note that both the measured and reference angle of attack and sideslip angle are computed based on
w, regardless of the actually estimated wind speed.

Figure 22. Comparison on the altitude control performance
between our presented approach and the total energy control
system (TECS) in an 18 m/s loiter flight.
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make use of any aerodynamic models of the vehicle,
while our approach fully exploits this information.

8.4. Aerobatics

In this task, we push the tail-sitter to its physical limits to
perform extremely aggressive aerobatics, which further
demonstrates the effectiveness and robustness of our pro-
posed methods. Our approach is the first to enable an au-
tonomous tail-sitter to perform a series of aerobatic
maneuvers with such agility in real outdoor environments.
These maneuvers are highly challenging even for expert
human pilots and are listed by increasing difficulty as
follows:

(1) Wingover: the vehicle makes a 180° turn in heading by
executing a fast climb and turn, during which the wing
swings over the top of the turn (i.e., the roll angle
reaches 90°), as shown in Figure 23.

(2) Loop: the vehicle enters a vertical circle and makes a
360° flip in pitch angle, as shown in Figure 24.

(3) Vertical Eight: the vehicle performs a vertical figure-
“8” trajectory with pitch angle pulled up and down
over 180°, as shown in Figure 25.

(4) Cuban Eight: similar to the Vertical Eight, the vehicle
performs a “∞”-shape trajectory with pitch angle
pulled up and down over 180°, as shown in Figure 26.

(5) Combo: the vehicle starts with Cuban Eight, followed
by Wingover, Vertical Eight, and Loop, and ends with
another Wingover to fly back to the origin, as shown in
Figure 27. The entire maneuver is executed consec-
utively without any breaks.

As shown in Figures 23–26, to specify the shape of the
trajectory and the vehicle pose at certain position on the
trajectory, we separate the entire trajectory by multiple
pieces by boundary points (i.e., the black squares). At the
boundary points, the full vehicle states (i.e., position, ve-
locity, and attitude) are specified and transformed to tra-
jectory boundary conditions p(0:3). With these boundary
conditions, trajectories within two consecutive boundary
points are optimized by our trajectory optimization
framework (48). To further specify the shape of each tra-
jectory segment, we specify some waypoints (i.e., the black
dots) that the trajectory must pass through, which is nat-
urally supported by the optimization framework in (48). All
the trajectories begin with a forward transition (i.e., the
origin to the first black square) and end with a backward
transition to hovering (i.e., the last black square to the
destination). Taking the Wingover in Figure 23(a) as an
example, the trajectory consists of four segments: forward
transition, climbing up with 90° rotation in both roll and
yaw, diving down with reverse heading, and backward
transition. The design of the Loop trajectory in Figure 24(a)
is similar, except that the top boundary point is designed to
drive the vehicle upside down (i.e., �180° in pitch angle)

and further inserting two waypoints to guarantee the shape
of Loop. The Vertical Eight and Cuban Eight trajectories are
generated by connecting two Loop trajectories. The
boundary points of the connecting trajectories are obtained
from the original Loop trajectories, and a waypoint in the
middle is used to serve the intersection point of the two
connecting trajectories.

For all aerobatics above, we use the same parameters of
the planner and controller as in the indoor SE(3) flights and
outdoor typical flights (i.e., Section 8.2 and Section 8.3,
respectively), except further decreasing the MPC position
penalty (i.e., the first three diagonal elements ofQk) to [900,
900, 900] to increase the system robustness in consideration
of the highly aggressive maneuvers being executed.

Figure 28 details the flight data of the Wingover. The
vehicle first transits from hovering to level flight with a
speed of 15 m/s, then performs the Wingover maneuver in
14–18 m/s, and finally ends with a backward transition
to hovering. The vehicle climbs 16.5 m at the top and
achieves the specified 90° roll and yaw angle at 45 s.
Note that the ZXY Euler angle incurs singularity in the
visualization, but our global on-manifold MPC has no
such singularity as shown in the FPV image in
Figure 23(b) and (d). Throughout the flight, the vehicle
tracks all of the state trajectories closely: the position
error is less than 0.75 m in all time, and the sideslip
angle is well stabilized around zero. This tracking ac-
curacy is not trivial for outdoor UAV aerobatics with
such large span of angle of attack (up to 130°), ac-
celeration (up to 18 m/s2), and angular velocity (up to
175 deg./s).

The flight results of the Loop are shown in Figure 29.
The vehicle transits to 15m/s and successfully finishes a
Loop with a radius of around 15 m in 10 s. It is seen that the
pitch angle rises to 180° at 44.6 s, when the vehicle is
totally upside-down at the top of the Loop as designed,
which is also shown in Figure 24(b) and (d). The vehicle
also tracks all of the state trajectories closely in the co-
ordinated flight condition (i.e., the sideslip angle is shown
around zero). The position error also remains below 1m in
all directions, even though the maximum acceleration and
angular velocity increase to 25.5 m/s2 and 370 deg./s,
respectively.

As shown in Figure 30, the vehicle finishes a more
aggressive aerobatic maneuver of Vertical Eight also in high
tracking accuracy. From 58 s in level flight, the vehicle
begins to pull up the pitch angle to 145° and quickly lowers
it to zero at 65 s, meanwhile the vehicle simultaneously
gains 60 m altitude by following an “S”-shape trajectory
(i.e., position A-B-C in Figure 25(a)). After that, the vehicle
flies another “S”-shape trajectory to decrease to the original
altitude when the pitch angle continues to decrease to�260°
(i.e., nearly free falling as shown in Figure 25(b) and (e))
and quickly increases to 35° to perform a 15 m/s level flight
again. It is seen that the angle of attack ranges from �115°
to 120°, the largest span among all the demonstrated aer-
obatics. Moreover, the acceleration and angular velocity,
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Figure 23. Wingover: (a) illustration of the trajectory that is divided in two segments by three boundary points (black squares). Each
segment is optimized by (48) and (b) images from the FPV camera. Labels A–F denote different flight phases of the vehicle.

Figure 24. Loop: (a) illustration of the trajectory, boundary points (black squares), and intermediate waypoints (black dots) that are
constrained in (48) and (b) images from the FPV camera. Labels A–F denote different flight phases of the vehicle.

Figure 25. Vertical Eight: (a) illustration of the trajectory, boundary points (black squares), and intermediate waypoints (black dots) and
(b) images from the FPV camera. Labels A–F denote different flight phases of the vehicle.

Figure 26. Cuban Eight: (a) illustration of the trajectory, boundary points (black squares), and intermediate waypoints (black dots) and
(b) images from the FPV camera. Labels A–F denote different flight phases of the vehicle.
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respectively peak, at 25.5 m/s2 and 400 deg./s. Despite such
large span of angle of attack and high acceleration and
angular velocity, the overall position error still remains less
than 1 m.

Similarly, the vehicle executes the Cuban Eight ma-
neuver in high tracking performance despite the extremely
high aggressiveness. The vehicle tracks the “∞”-shape with
a width of 65 m, a height of 30 m, and a time duration of
15 s. The pitch angle increases from 36° in level flight to
225° at position C in Figure 26(a), then it decreases to�88°
at position E, and recovers to 36° at position F for level
flight. The resulting span of angle of attack is about 220°.

The acceleration and angular velocity peak at 22 m/s2 and
400 deg./s, respectively. The maximum position error
slightly rises to 1.38 m due to the large control actuation, but
the overall tracking performance for the other state tra-
jectories is still as good as other aerobatic maneuvers
(Figure 31).

Moreover, we demonstrate a Combo trajectory by
connecting the above aerobatic maneuvers in sequence, as
shown in Figure 27. The vehicle performs the Combo
maneuver which requires extremely large control actuation
over the entire 62 s flight. In Figure 32, it is seen that the
thrust acceleration and angular velocity commands

Figure 28. Flight results of the aerobatic maneuver Wingover: (a) position, (b) flight speed, (c), (f), and (i) attitude in Euler angles, (d)
position tracking errors, (e) acceleration, (g) angle of attack and sideslip angle, and (h) angular velocity. For the angle of attack and
sideslip angle, their measurements are displayed only when the airspeed exceeds 2 m/s due to the unstable airspeed measurements at low
speeds. In all subplots, the solid and dashed lines, respectively, denote the measurement and reference. Note that the ZXY Euler angle
representation incurs singularity when roll angle reaches 90° at 45 s.

Figure 27. Combo flight trajectory illustration.
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computed by the MPC frequently touch their limits, but the
controller still manages to stabilize the vehicle under such
control saturation.

The trajectory aggressiveness and tracking accuracy of
the five aerobatic maneuvers in the Combo flight are sta-
tistically analyzed in Figure 33. The maximum velocity,
acceleration, and angular velocity reach 19.4 m/s, 25.5 m/s,
and 520 deg./s, respectively. Still, the proposed global
controller shows a remarkable tracking performance that the

average position tracking error is 0.33 m and largest position
error is only 1.35 m. Readers are highly recommended to
watch the accompanying videos for better visualization of
the experiments.

8.5. Time consumption

The statistical time consumption of the trajectory planner
and MPC in all of the above flight tests including SE(3)

Figure 30. Flight results of the aerobatic maneuver Vertical Eight: (a) position, (b) flight speed, (c), (f), and (i) attitude Euler angles, (d)
position tracking errors, (e) acceleration, (g) angle of attack and sideslip angle, and (h) angular velocity. For the angle of attack and
sideslip angle, their measurements are displayed only when the airspeed exceeds 2 m/s due to the unstable airspeed measurements at low
speeds. In all subplots, the solid and dashed lines, respectively, denote the measurement and reference.

Figure 29. Flight results of the aerobatic maneuver Loop: (a) position, (b) flight speed, (c), (f), and (i) attitude Euler angles, (d) position
tracking errors, (e) acceleration, (g) angle of attack and sideslip angle, and (h) angular velocity. For the angle of attack and sideslip
angle, their measurements are displayed only when the airspeed exceeds 2 m/s due to the unstable airspeed measurements at low speeds.
In all subplots, the solid and dashed lines, respectively, denote the measurement and reference.
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Figure 31. Flight results of the aerobatic maneuver Cuban Eight: (a) position, (b) flight speed, (c), (f), and (i) attitude Euler angles, (d)
position tracking errors, (e) acceleration, (g) angle of attack and sideslip angle, and (h) angular velocity. For the angle of attack and
sideslip angle, their measurements are displayed only when the airspeed exceeds 2 m/s due to the unstable airspeed measurements at low
speeds. In all subplot, the solid and dashed lines, respectively, denote the measurement and reference.

Figure 32. Control efforts of the aerobatic maneuver Combo. The shaded areas indicate the comprising maneuvers of Cuban Eight,
Wingover, Vertical Eight, Loop, and Wingover. The dotted lines denote input constraints in the MPC optimization (61).

Figure 33. Aggressiveness and control performance of five aerobatic maneuvers in the Combo flight. (a)–(d) show the norm of velocity,
acceleration, angular velocity, and position control error, respectively.
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flights, typical maneuvers, and aerobatic maneuvers is sum-
marized in Figure 34. For the trajectory generation in (48)
which runs offline, the computation time is about 45–750 ms
to generate one trajectory segment with a length of about 2.5–
50 m. The average and maximum time consumption to solve
the MPC problem in (61) in total is 0.84 ms and 3.46 ms,
respectively, showing a high computational efficiency ensur-
ing online implementation at 100 Hz.

9. Conclusion

In this section, we discuss the limitation and extension of the
proposed framework and then draw the conclusion.

9.1. Limitation

Our proposed framework is a model-based approach.
Higher tracking accuracy requires a more precise dynamic
model, especially the aerodynamic model. However,
identifying a high-fidelity aerodynamic model generally
requires high-cost and time-consuming wind tunnel tests.
The cost and time escalate for tail-sitter UAVs where the
envelope of angle of attack is large. In this paper, we
leveraged the wind tunnel test data in Lyu et al. (2018a). For
general tail-sitter UAVs, such aerodynamic model could be
identified from onboard sensor data collected in real flights,
which would be a promising future research to pursue.

Another limitation lies in the robustness and computation
efficiency of the trajectory planner. In this paper, we adopted
theMINCO trajectory optimization framework (Wang et al.,
2022), which parameterizes the trajectory by a multi-stage
polynomial and penalizes the constraints in the objective
function as soft constraints. Softly penalizing the constraints
in objective functions could reduce the optimization time by
eliminating the hard constraints. However, due to the ex-
tremely nonlinear objective function, the solver could easily
converge to local minimum violating the constraints. This
phenomenon occasionally occurred in the planning of the
outdoor aerobatic trajectories when the waypoint locations
are poorly specified. Moreover, the optimization time is still

quite long, 40–750 ms, preventing it from real-time im-
plementation on current tail-sitter onboard computing
devices.

9.2. Extension

Firstly, the proposed trajectory optimization could poten-
tially be solved more efficiently by leveraging state-of-the-
art nonlinear optimization techniques (e.g., Schulman et al.
(2014); Gill et al. (2005)), the availability of higher-
performance onboard computing devices, and the paralle-
lization of the optimization based on Graphic Processing
Units (GPUs). With an efficient solution, the proposed
trajectory generation could serve as a reliable back-end
planner for online trajectory planning. Equipped with on-
board sensors such as cameras and LiDARS, and the cor-
responding front-end corridor generation techniques (e.g.,
Liu et al. (2017); Gao et al. (2019)), the tail-sitter could
perform autonomous obstacle avoidance in cluttered
environments.

Secondly, the tracking accuracy can be further improved
by augmenting a low-level controller to the thrust accel-
eration aT. In the present implementation, we directly
mapped the thrust acceleration command aT to the collective
throttle of the four motors. However, the actual propeller
thrust is also affected by various other factors, such as the
propeller inflow (Brandt and Selig, 2011; Gill and D’andrea,
2017) and motor internal dynamics. These factors have
caused significant errors between the actual and com-
manded thrust acceleration as shown in our experiment
results. This issue could be mitigated by tracking the thrust
acceleration command aT with a low-level controller based
on accelerometer measurements.

Thirdly, other than the model predictive controller in the
present implementation, the flatness function provides a
possibility to design a more light-weight cascaded PID
controller that runs on low-cost microprocessors. The
cascaded control architecture could be similar to that of a
multicopter: an outer-loop position controller first computes
the desired acceleration, then our differential flatness

Figure 34. Time consumption of (a) solving the proposed trajectory optimization to generating a trajectory segment and (b) solving the
proposed MPC at each control step.
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function maps the desired acceleration to the desired attitude
and thrust, and finally the attitude is tracked by an inner-
loop attitude controller. Such a cascaded control structure is
also used in existing works (Ritz and D’Andrea, 2017;
Cheng and Pei, 2022) but based on an over-simplified
aerodynamic model.

Finally, the proposed framework can be extended to
other configurations of tail-sitter UAVs, such as the single-
propeller configuration (Frank et al., 2007; Wang et al.,
2017b; De Wagter et al., 2018) and the shoulder-mounted
twin-engine configuration (Bapst et al., 2015; Ritz and
D’Andrea, 2017; Sun et al., 2018). All of the trajectory
generation, flatness transform, and global control for the
high-level system can be directly applied to the other
configurations, while the low-level controller could be re-
designed according to the specific vehicle dynamic pa-
rameters and actuator performances.

9.3. Conclusion

In this paper, we proposed a trajectory generation and global
tracking controller for aggressive agile tail-sitter flights. The
foundation of the framework is the differential flatness
property that is proved in coordinated flights. The singu-
larity conditions occurred in the flatness function were fully
investigated and resolved in the framework. Based on these
theoretical results, we developed a trajectory optimization
framework for trajectory generation and a model predictive
controller for trajectory tracking. The entire approach is
tested on a quadrotor tail-sitter prototype in extensive real-
world flights. Notably, we demonstrated agile SE(3) flights
in indoor environments and aerobatic maneuvers in windy
outdoor environments, which were rarely shown in any
prior literature works. Extensive flight tests on typical
maneuvers of transition, level flight, and loiter have also
shown a superior tracking accuracy compared to existing
methods.
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Appendix

Appendix A: Proof of theorem 1

Given the vehicle dynamics in (1), the rank of system
dynamics derivative w.r.t input can be given by eliminating
unrelated items:

rank

�
∂f
�
xfull,ufull

�
∂ufull

�
¼ rank

�
∂ð _v, _ωÞ
∂ðaT , τÞ

�

¼ rank

0
BBB@
2
6664

∂ _v
∂aT

∂ _v
∂τ

∂ _ω
∂aT

∂ _ω
∂τ

3
7775
1
CCCA

(65)

where the following elements can be computed directly
from the system dynamics in (1):

∂ _v
∂aT

¼ xb,
∂ _v
∂τ

¼ 0,
∂ _ω
∂aT

¼ 0 (66)

and ∂ _ω=∂τ has coupling effect due to the coordinated flight
condition that the vehicle has no lateral airspeed:

vBay ¼ eT2R
Tva ≡ 0 (67)

which leads to the derivative on the both sides:

�eT2 PωRR
Tva þ eT2R

T _va ¼ 0 (68a)

0 yTb _va ¼ vTaRbe2cω (68b)

0 yTb _va ¼ vBaxωz � vBazωx (68c)

It is seen that the body angular velocity elements ωx and
ωz are coupled.Without loss of generality, we considerωz as
a function of ωx. Then we have

∂ _ω
∂τ

¼

∂ _ωx

∂τ

∂ _ωy

∂τ

∂ _ωz

∂τ

2
66666664

3
77777775
¼

∂ _ωx

∂τ

∂ _ωy

∂τ

∂ _ωz

∂ _ωx

∂ _ωx

∂τ

2
66666664

3
77777775
¼

1 0 0

0 1 0

∂ _ωz

∂ _ωx
0 0

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
A

J�1

(69)

With (65), (66), and (69), the derivative is finally
computed and transformed based on the fact of non-zero
vector xb and the full-rank inertia matrix:

2
664

∂ _v
∂aT

∂ _v
∂τ

∂ _ω
∂aT

∂ _ω
∂τ

3
775 ¼

�
xb 0
0 A

��
1 0
0 J�1

�
∼
�
xb 0
0 A

�
(70)

Therefore, we have its rank

rank

�
∂f
�
xfull,ufull

�
∂ufull

�
¼ rank

��
xb 0
0 A

��
¼ 3 (71)
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Appendix B: Proof of theorem 2

Reminding the aerodynamic force in (6) and the coordinated
flight condition that there is no lateral airspeed in (27)
(i.e., eT2 v

B
a ¼ 0), we have

∂f a
∂vBa

¼ ρS
2

�
c
∂V 2

∂vBa
þ V 2∂c

∂α
∂α
∂vBa

þ V 2∂c
∂β

∂β
∂vBa

�
(72)

where

∂V 2

∂vBa
¼ ∂
��vBa��2
∂vBa

¼ 2vB
T

a
(73a)

∂α
∂vBa

¼ ∂
∂vBa

tan�1e
T
3 v

B
a

eT1 vBa

¼ 1

1þ
�
eT3 v

B
a

eT1 vBa

�2

eT1 v
B
a e

T
3 � eT3 v

B
a e

T
1�

eT1v
B
a

�2

¼
	�vBaz 0 vBax



vB2

ax
þ vB2

az

¼ vB
T

a be2c
V 2

(73b)

∂β
∂vBa

¼ ∂
∂vBa

�
sin�1 e

T
2 v

B
a��vBa��
�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
eT2v

B
a��vBa��
�2

s
��vBa��eT2 � eT2 v

B
a

vB
T

a��vBa����vBa��2

¼ eT2
V

(73c)

Also, the aerodynamic coefficient gradients ∂c/∂α and
∂c/∂β of an axially symmetric airframe satisfy (11).
Substituting (73) into (72), we have

∂fa
∂vBa

¼ ρS
2

�
2cvB

T

a þ∂c
∂α

vB
T

a be2c þ V
∂c
∂β
eT2

�
(74)

Appendix C: Calculation of matrices _N and _h

As the matrices N and h are broken into block matrices in
(29), their time derivatives can be taken in block matrices as
follows:

h ¼ _h1
_h2

� �
, N ¼ _N1

_N2

� �
(75)

where

_h1 ¼ d

dt

�
yTb _va

�
¼ d

dt

�
eT2R

T _va
�

¼ eT2
��PωRRT _va þ RT €va

�
(76a)

_h2 ¼ d

dt

�
€va � 1

m
R

∂fa
∂vBa

RT _va

�

¼ _€v� 1

m
R

�
PωR

∂fa
∂vBa

RT _va þ d

dt

�
∂fa
∂vBa

�
RT _va

�∂fa
∂vBa

PωRRT _va þ ∂fa
∂vBa

RT €va

�
(76b)

_N1 ¼ 	 0 _N12



(76c)

_N12¼ d

dt

�
vTaRbe2c

� ¼ � _vTaR þ vTaRPωR
� be2c (76d)

_N2 ¼ 	 _N21
_N22



(76e)

_N21 ¼ d

dt
ðRe1Þ ¼ RPωRe1 (76f)

_N22 ¼ d

dt

�
R

�
�
��

aTe1 þ fa
m

�
þ 1

m

∂f a
∂vBa

�
vBa
���

¼ RPωR

�
�
��

aTe1 þ f a
m

�
þ 1

m

∂fa
∂vBa

�
vBa
��

þR

�
�
��

_aTe1 þ 1

m

�
∂fa
∂V

_V þ ∂fa
∂α

_α

��

þ1

m

��
d

dt

�
∂fa
∂vBa

���
vBa
�þ ∂fa

∂vBa

�
_vBa
���

(76g)

∂f a
∂V

¼ ρVSc (76h)

∂fa
∂α

¼ 1

2
ρV 2S

∂c
∂α

(76i)

_vBa ¼ d

dt

�
RTva

� ¼ �PωRRTvþ RT _va (76j)

_α ¼ 1

1þ
 
vBaz
vBax

!2

_vBazv
B
ax
� vBaz _v

B
ax

vB2

ax

¼ _vBazv
B
ax
� vBaz _v

B
ax

V 2

(76k)

_va¼ _v� _w (76L)
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€va ¼ €v� €w (76m)

_V ¼ vTa _va
�
V (76n)

And with (74), we have

d

dt

�
∂f a
∂vBa

�
¼ ρS

2

�
2

�
∂c
∂α

_αvB
T

a þ c _vB
T

a

�
þ
�
∂2c

∂α2
_αvB

T

a

þ ∂c
∂α

_vB
T

a

�
be2c þ

�
_V
∂c
∂β

þ V
∂2c
∂β∂α

_α

�
eT2

�
(77)

Appendix D: Proof of theorem 3 (determinant
of N)

We first denote

Ψ ¼ �
��

aTe1 þ fa
m

�
þ 1

m

∂fa
∂vBa

�
vBa
�

(78)

With (20), we have

aTe1 þ f a
m

¼ k _v� gk½ cosðγ� αÞ 0 �sinðγ� αÞ �T

(79)

with (26) and (11), we have

∂f a
∂vBa

�
vBa
� ¼ ρS

2

�
�∂c
∂α

eT2
�
vBa
�2 þ V

∂c
∂β

eT2
�
vBa
��

¼ ρSV 2

2

2
66666664

0
∂cx
∂α

0

∂cy
∂β

sin α 0 �∂cy
∂β

cos α

0
∂cz
∂α

0

3
77777775

(80)

Therefore, combining (79) and (80), (78) can be re-
written as

Ψ ¼
2
4 0 ψ12 0
ψ21 0 ψ23

0 ψ32 0

3
5 (81)

where

ψ12 ¼ �k _v� gksinðγ� αÞ þ ρSV 2

2m

∂cx
∂α

(82a)

ψ21 ¼ k _v� gksinðγ� αÞ þ ρSV 2

2m

∂cy
∂β

sin α (82b)

ψ23 ¼ k _v� gkcosðγ� αÞ � ρSV 2

2m

∂cy
∂β

cos α (82c)

ψ32 ¼ �k _v� gkcosðγ� αÞ þ ρSV 2

2m

∂cz
∂α

(82d)

Now we calculate the determinant of N. With (30c) and
(30d), N can be factorized as

N ¼
�
1 0
0 R

�"
0 vB

T

a be2c
e1 Ψ

#
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

N

(83)

which implies detðNÞ ¼ detðNÞ. Performing elementary
row and column operations on N produces

N ¼

2
666664
0 �vBaz 0 vBax
1 0 ψ12 0

0 ψ21 0 ψ23

0 0 ψ32 0

3
777775∼

2
666664
1 0 0 0

0 ψ32 0 0

0 0 �vBaz vBax
0 0 ψ21 ψ23

3
777775
(84)

By substituting (82) into (84), the determinant ofN hence
can be calculated as follows:

det Nð Þ ¼ det N ¼ �ψ32 vBazψ23 þ vBaxψ21

� ��
¼ �ψ32kvak ψ23sin αþ ψ21cos αð Þ
¼ �ψ32kvakðk _v� gkcos γ� αð Þsin α

þk _v� gksin γ� αð Þcos αÞ
¼ �ψ32kvakk _v� gksin γ
¼ �ψ32kva × _v� gð Þk (85)

It is noted that the derivative of (22) w.r.t. α is given as

∂FðαÞ
∂α

¼ �2mk _v� gk
ρSV 2 cosðγ� αÞ þ czðα, 0Þ

∂α

¼ 2m

ρSV 2ψ32

(86)

Therefore, the determinant of N is finally arrived at

detðNÞ ¼ �ρSV 2

2m

∂FðαÞ
∂α

kva × ð _v� gÞk (87)

Appendix E: Singularity kvak = 0

E.1 Proof of Theorem 4: determinant of N. With (39c)
and (39d), N can be factorized as

N ¼
�
1 0
0 R

�"
0

��zfixb × ð _v� gÞ��eT1
e1 �aTbe1c

#
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N

(88)

which implies detðNÞ ¼ detðNÞ. Performing elementary
row and column operations on N produces

N∼ diag
�	

1
��zfixb × ð _v� gÞ�� aT �aT


�
(89)
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Hence, the determinant of N can be calculated as
follows:

detðNÞ ¼ �a2T
��zfixb × ð _v� gÞ�� (90)

E.2 Calculation of _h and _N: As h andN break into block
matrices, their derivatives _h and _N can be presented like
(75), where each block is calculated as follows:

_h1 ¼
��
zfixb
�
v
:::�T

zb þ
��
zfixb
�
€v
�T
RPωRe3 (91a)

_h2 ¼ v
:::

(91b)

_N1 ¼
"
0

�ð _v� gÞT�zfixb �2€veT1���zfixb �ð _v� gÞ��
#

(91c)

_N2 ¼ RPωRe1 � v� gð ÞT €va
aT

R þ aTRPωR

 !
be1c

" #

(91d)

Appendix F:Singularity γ = 0, ±π

F.1 Proof of Theorem 5: determinant of N. Because yb is
perpendicular to va, it still holds the lateral airspeed
condition yTb va ¼ 0. We can leverage the results in (81),
(82), and (86) in Appendix D to factorize det(N) as
follows:

N ¼
�
1 0
0 R

�"
0

��zfixb × ð _v� gÞ��eT1
e1 Ψ

#
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N

(92)

which implies detðNÞ ¼ detðNÞ. Performing elementary
row and column operations on N produces

N∼ diag
�	

1
��zfixb × ð _v� gÞ�� ψ23 ψ32


�
(93)

where ψ23 ¼ ðk _v� gk � ρSV 2=2m∂cy=∂βÞcos α is from
(82c) by setting γ = 0 and ψ32 = ρSV2/2m∂F(α)/∂α is from
(86). Finally, the determinant of N is

detðNÞ ¼ ρSV 2

2m

∂FðαÞ
∂α

��zfixb × ð _v� gÞ��ψ23 (94)

F.2 Calculation of _h and _N: Similarly, the derivatives _h
and _N can be presented like (75), in which block matrices _h1
and _N1 are given by (91a) and (91c) in Appendix E.2, while
_h2 and _N2 are given by (76).

Appendix G: Gradients of the flatness functions

We denote P ¼ 	 vT _vT €vT

T
,b ¼ 	 _aT ωT


T
for

simplicity. We also split the matrix h and N2 in (30), (39),

and (41) into h ¼ 	 h1 hT2

T

and N2 ¼ ½N21 N22 �,
respectively.

G.1 When in coordinated flight. The flatness functions
are presented in Section 4.2, and the corresponding gra-
dients are given as follows:

∂aT
∂P ¼ ∂k _v� gkcosðγ� αÞ � fax

�
m

∂P
¼ ∂k _v� gk

∂P cosðγ� αÞ � k _v� gksinðγ� αÞ�
∂γ
∂P � ∂α

∂P
�
� eT1

m

∂fa
∂P

(95a)

∂ω
∂P ¼ ½ 03×1 I3 �N�1

�
∂h
∂P � ∂N

∂P b

�
(95b)

where
∂k _v� gk

∂P ¼ ð _v� gÞT
k _v� gk

∂ _v
∂P (96a)

∂fa
∂P ¼ ∂fa

∂vBa

∂vBa
∂P (96b)

∂γ
∂P ¼ r

∂
∂P atan2 k _v� gð Þ× va k , _v� gð ÞTva

� �
¼ r

k _v� gð Þ× vak2 þ _v� gð ÞTva
� �2

_v� gð ÞTva _v� gð Þ× vað ÞT va½ �
k _v� gð Þ× va k � k _v� gð Þ× va k vTa

 !
∂ _v
∂P

 
_v� gð ÞTva _v� gð Þ× vað ÞT _v� g½ �

k _v� gð Þ× va k � k _v� gð Þ× va k _v� gð ÞT
 !

∂v
∂P

!
(96c)
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∂α
∂P ¼

∂h
∂P sinðγ� αÞ þ h cosðγ� αÞ ∂γ

∂P
h cosðγ� αÞ � ∂cz

∂α

(96d)

∂h
∂P ¼ 2m

ρS

 
ð _v� gÞT

k _v� gkkvak2
∂ _v
∂P � 2k _v� gkvTa

kvak4
∂v
∂P

!
(96e)

∂h
∂P ¼

�
∂h1

∂P
T ∂h2

∂P
T
�T

(96f)

∂h1

∂P ¼ _vTa
∂yb
∂P þ yTb

∂ _v
∂P (96g)

∂Rξ
∂P ¼ ξ1

∂xb
∂P þ ξ2

∂yb
∂P þ ξ3

∂zb
∂P (96i)

∂RTξ
∂P ¼

��
ξT
∂xb
∂P
�T �

ξT ∂yb∂P

�T �
ξT ∂zb∂P

�T �T
(96j)

∂yb
∂P ¼ r

kbvacð _v� gÞk2I3 � bvacð _v� gÞð _v� gÞTbvac
kbvacð _v� gÞk3

∂ðbvacð _v� gÞÞ
∂P

(96k)

∂ðbvacð _v� gÞÞ
∂P ¼ �b _v� gc ∂v

∂P þ bvac ∂ _v∂P
(96l)

∂xb
∂P ¼ bybcExpðαybÞ

va
kvak

∂α
∂P þ ∂ExpðαybÞξ

∂yb

����
ξ¼ va

kvak

þExpðαybÞ
kvak2I3 � vav

T
a

kvak3
∂v
∂P

(96m)

∂xb
∂P ¼ bybcExpðαybÞ

va
kvak

∂α
∂P þ ∂ExpðαybÞξ

∂yb

����
ξ¼ va

kvak

þExpðαybÞ
kvak2I3 � vav

T
a

kvak3
∂v
∂P

(96n)

∂zb
P ¼ bxbc ∂yb∂P � bybc

∂xb
∂P (96o)

∂
∂P
�
∂f a
∂vBa

ξ

�
¼ ρS

2
ðð2 ∂c

α
vB

T

a þ ∂2c

∂α2
vB

T

a be2c

þV
∂2c
∂β∂α

eT2

�
ξ
∂α
∂P þ

�
2cξT � ∂c

∂α
ξTbe2c

þ∂c
∂β

eT2ξv
BT

a

V

!
∂vBa
∂P

! (96p)

∂vBa
∂P ¼ ∂RTξ

∂P
����
ξ¼va

þ RT∂va
∂P (96q)

∂Nb
∂P ¼

2
66664
bT∂N

T
1

∂P

b1
∂N21

∂P þ
X4
i¼2

�
bi
∂N22ei�1

∂P
�
3
77775 (96r)

∂NT
1

∂P ¼
�
0

�
� be2c ∂vBa

∂P

�T �T
(96s)

∂N21

∂P ¼ ∂xb
∂P (96t)

∂N22ej
∂P ¼ ∂R

∂PR
TN22ej þR

�
� be1cej∂aT∂Pþ

1

m

��
ej
� ∂fa
∂P þ ∂2fa

∂vBa ∂P
�
vBa
�
ej � ∂fa

∂vBa

�
ej
� ∂vBa
∂P
�� (96u)

G.2 When in singularity condition kvak = 0. The flatness
functions are rewritten in Section 4.3.2 when kvak = 0. The
corresponding modified gradients that are different from
Appendix G.1 are given as follows:

∂aT
∂P ¼ ∂k _v� gk

∂P (97a)

∂xb
∂P ¼ k _v� gk2I3 � ð _v� gÞð _v� gÞT

k _v� gk3
∂ _v
∂P

(97b)

∂h2
∂P ¼ ∂€v

∂P � 1

m

 
∂Rξ
∂P ξ¼ ∂f a

∂vBa
RT _va

þ R

∂

�
∂f a
∂vBa

�
ξ

∂P

��������
ξ¼RT _va

þ R
∂f a
∂vBa

∂RTξ
∂P

����
ξ¼ _va

þ R
∂f a
∂vBa

RT ∂ _v
∂P
��������� (96h)
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∂yb
∂P ¼

���zfixb �ð _v�gÞ��2I3� ��zfixb �ð _v�gÞ���zfixb �ð _v�gÞ�T���zfixb �ð _v�gÞ��3�
zfixb
� ∂ _v
∂P

(97c)

∂h1

∂P ¼ ��zfixb �€va�T∂zb∂P þ zTb
�
zfixb
� ∂€va
∂P (97d)

∂h2

∂P ¼ ∂€va
∂P (97e)

∂NT
1

∂P

"
0

 
�e1 ð _v�gÞTbzfixb c2

kbzfixb cð _v�gÞk
∂ _v
∂P

!T #T
(97f)

∂N22ej
∂P ¼ �aT

∂R
∂P be1cej þ Rbe1cej∂aT∂P

(97g)

G.3 When in singularity condition γ = 0, ±π. The flat-
ness functions are rewritten in Section 4.3.2 when |γ| = 0.
Since aT, h2, and N2 are the same as those presented in
Section 4.2, while h1 andN1 are the same as those in Section
4.3.2, their gradients are identical to those given, respec-
tively, in Appendix G.1 and G.2.

Appendix H: Proof of theorem 6 (the
error-state dynamics)

The dynamics of (56b) and (56c) simply take the time de-
rivative to (54b) and (54c), respectively. Denoting θ = Log(R),
the exponential map holds _θ ¼ AT ðθÞω, where ω ¼
ðRT _RÞ⋁, (�)⋁ is the inverse of P�R that maps a skew-symmetric
matrix to a vector, and A(�) denotes the Jacobian of the ex-
ponential coordinates of SO(3) (Bullo and Murray, 1995):

AðθÞ ¼ I3 þ
�
1� coskθk

kθk
�

PθR
kθk þ

�
1� sinkθk

kθk
�

PθR
2

kθk2
(98)

By substituting (54b) into the above rules, we have

δ _θ ¼ AT ðδθÞ
��

RTRd

�T d
dt

�
RTRd

��⋁

¼ AT ðδθÞ�RT
dR
��PωRRTRd þ RTRdbωdc

��⋁
¼ AT ðδθÞ��RT

dRωþ ωd

�
(99)

which is the error attitude dynamics in (56d).

Appendix I: Proof of Lemma 1 (the linearized
error-state dynamics)

The position error dynamics in (56b) is linear, and the
velocity error dynamics in (56c) can be linearized along the
reference trajectory. Specifically, sinceRTRd = Exp(δθ) ≈ I3
+ PδθR, (54) implies the following:

δ _v ¼
�
aTdRde1 þ 1

m
Rdfad

�
�
�
aTRe1 þ 1

m
Rfa

�
≈
�
aTdRd � ðaTd � δaT ÞRdðI3 þ PδθRÞT�e1

þ 1

m
Rd

�
f ad � ðI3 þ PδθRÞT�f ad � δfa

��
≈Rde1δaT � Rd

�
aTdbe1c þ

�
fad
m

�
δθ þ Rd

δfa
m

(100)

where

δfa ¼ fad � fa ≈
∂f ad
∂vBad

δvBa (101a)

δvBa ¼ vBad � vBa ¼ RT
d vad � RTva

≈RT
d vad � ðI3 þ PδθRÞRT

d ðvad � δvaÞ
≈� PδθRRT

d vad þ RT
d δva

≈
j
vBad

k
δθ þ RT

d δva

(101b)

And the partial derivative ∂fad=∂v
B
ad

in (101a) is given in
(74):

∂fad
∂vBad

¼ ∂fa
∂vBa

����
vBad

ðsee Equation ð74ÞÞ (102)

In (101b), va = v � w is the actual air velocity and vad ¼
vd � w is the air velocity used to calculate the reference
trajectory. Hence,

δva ¼ va � vad ¼ δv� δw; δw ¼ w� w (103a)

and

δfa ≈
∂fad
∂vBad

�j
vBad

k
δθ þ RT

d ðδv� δwÞ
�

(104a)

By substituting (101a) and (104) into (100), the velocity
error dynamics can be given by

δ _v ¼ MTδaT þMvδvþMRδθ þMww (105)

where

MT ¼ Rde1 (106a)

Mv ¼ 1

m
Rd

∂f ad
∂vBad

RT
d (106b)

MR ¼ Rd

 
�aTdbe1c �

�
fad
m


þ ∂fad
∂vBad

�
vBad
m

!
(106c)

Mw ¼ �1

m
Rd

∂f ad
∂vBad

RT
d (106d)

To linearize the attitude error dynamics, we substitute (54d)
in (56d) and approximate A(δR) ≈ I3. Thus we have

_δR ≈� RT
dRωþ ωd

≈� ðIþ PδRRÞTðωd � δωÞ þ ωd

≈δω� bωdcδR
(107)
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