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Abstract
In recent years, advancements in Light Detection and Ranging (LiDAR) technology have made 3D LiDAR sensors more
compact, lightweight, and affordable. This progress has spurred interest in integrating LiDAR with sensors such as Inertial
Measurement Units (IMUs) and cameras for Simultaneous Localization and Mapping (SLAM) research. Public datasets
covering different scenarios, platforms, and viewpoints are crucial for multi-sensor fusion SLAM studies, yet most focus on
handheld or vehicle-mounted devices with front or 360-degree views. Data from aerial vehicles with downward-looking
views is scarce, existing relevant datasets usually feature low altitudes and are mostly limited to small campus envi-
ronments. To fill this gap, we introduce the Multi-sensor Aerial Robots SLAM dataset (MARS-LVIG dataset), providing
unique aerial downward-looking LiDAR-Visual-Inertial-GNSS data with viewpoints from altitudes between 80 m and
130 m. The dataset not only offers new aspects to test and evaluate existing SLAM algorithms, but also brings new
challenges which can facilitate researches and developments of more advanced SLAM algorithms. The MARS-LVIG
dataset contains 21 sequences, acquired across diversified large-area environments including an aero-model airfield, an
island, a rural town, and a valley. Within these sequences, the UAV has speeds varying from 3 m/s to 12 m/s, a scanning
area reaching up to 577,000 m2, and the max path length of 7.148 km in a single flight. This dataset encapsulates data
collected by a lightweight, hardware-synchronized sensor package that includes a solid-state 3D LiDAR, a global-shutter
RGB camera, IMUs, and a raw message receiver of the Global Navigation Satellite System (GNSS). For algorithm
evaluation, this dataset releases ground truth of both localization and mapping, which are acquired by on-board Real-time
Kinematic (RTK) and DJI L1 (post-processed by its supporting software DJI Terra), respectively. The dataset can be
downloaded from: https://mars.hku.hk/dataset.html.
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1. Introduction

Simultaneous Localization and Mapping (SLAM) tech-
nologies have played a crucial role in the development of
robotic autonomous systems in recent years. Precise and
robust state estimation constitutes a critical aspect of robotic
autonomy. Hence, the solution of combining SLAM and
mobile robots became a popular topic. As for mobile robots,
the integration of multi-sensor data for SLAM inherently
surpasses the use of a single sensor in complex environ-
ments (Xu et al., 2022; Zhu et al., 2022). The advancements
in Light Detection and Ranging (LiDAR) technology have
resulted in 3D LiDAR sensors becoming more cost-
effective, lightweight, and compact. The fusion between
Light Detection and Ranging (LiDAR), camera, Inertial
Measurement Units (IMUs), and Global Navigation

Satellite System (GNSS) raw measurements has gained
significant attention and shown high potential in mobile
robot navigation and mobile mapping (Xu and Zhang, 2021;
Liu and Zhang, 2021b; Yuan et al., 2023; Cao et al., 2022).
This approach prevents the degradation of individual
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sensors, ensuring accurate state estimation for robust nav-
igation (Liu and Zhang, 2021a; Lin et al., 2020, 2021; He
et al., 2023). Furthermore, the combination of LiDAR,
camera, and IMU has distinct advantages in handling
continuous movements during mobile mapping and can
build high-accuracy, high-resolution, and full RGB-colored
3D models of the traveled environment (Lin and Zhang,
2022; Zheng et al., 2022; Qin et al., 2018). Multi-sensor
SLAM has the potential to benefit a variety of applications,
including geological surveying, construction site recon-
struction, and aerial mapping (Liu et al., 2023a, 2023b).

To evaluate the real-world feasibility of SLAM algo-
rithms, datasets that contain realistic scenarios collected by
advanced devices are necessary. Meanwhile, the majority of
existing aerial datasets primarily concentrate on low alti-
tude, indoor environments (e.g., school campuses) or are
absent of LiDAR data, which are not suitable for large-scale
and long-duration mapping applications, such as aerial
surveying and mapping at high altitudes. In order to aug-
ment the variety encompassed within aerial datasets, we
introduce a multi-sensor aerial robots SLAM dataset for
LiDAR-Visual-Inertial-GNSS fusion (MARS-LVIG data-
set), which is the first dataset to use a downward-looking
method with both LiDAR and camera sensors from a high
altitude (higher than 80 m), primarily for SLAM applica-
tions. The downward-looking scanning method brings
about significant challenges for SLAM, considering that
LiDAR SLAM algorithms are prone to degeneration and the
visual SLAM algorithms can easily fail at texture-less flats
when facing the ground, while currently providing great
value for applications such as aerial survey and mapping. To
ensure the diversity of scenarios within our dataset, we
collect data across various natural and urban environments.
For aerial datasets, particularly in large environments, the
collection of ground truth data presents a substantial
challenge. In this dataset, we utilized the Real-time Kine-
matic (RTK) receiver and the DJI L1 to provide ground truth
for localization and mapping, respectively.

In summary, our contribution is a multi-sensor aerial
robot SLAM dataset, which has three unique features de-
tailed below:

· This dataset includes unique downward-looking data
collected by a solid-state 3D LiDAR, a global-shutter
RGB camera, IMUs, and a raw message receiver of
GNSS from high altitude between 80 m and 130 m;

· This dataset is collected across diversified environments,
including an aero-model airfield, an island, a rural town,
and a valley. The scanning area covers from 94,000 m2 to
577,000 m2 with a maximum path length of 7.148 km;

· This dataset provides both position and mapping ground
truth at centimeter-level accuracy using RTK and DJI
L1, respectively. These ground truth measurements are
provided for the evaluation of SLAM algorithms.

The structure of this paper is as follows. Section 2
discusses the detailed comparison between our dataset

and existing datasets. The sensor configuration, as depicted
in Figure 1, encompassing a 3D LiDAR, an RGB camera, a
raw message receiver of GNSS, an RTK antenna, and a DJI
L1, is explicated in Section 3. Section 4 presents the
characteristics of our dataset, mainly focusing on the fea-
tures of different scenarios. We also conduct verification of
the data and present the results in Section 5.

2. Related works

Tables 1 and 2 list a selection of recent datasets, incorpo-
rating both those collected by terrestrial LiDAR devices and
those collected by aerial platforms. There are several da-
tasets with LiDAR collected by ground vehicles such as cars
(Geiger et al., 2012; Blanco-Claraco et al., 2014; Jeong
et al., 2019) and wheeled robots (Carlevaris-Bianco et al.,
2016; Shi et al., 2020; Yin et al., 2021), by handheld
platforms (Ramezani et al., 2020; Zhang et al., 2021;
Helmberger et al., 2022), and by multi-platform (Jiao et al.,
2022).

As for car-platform datasets, the most representative
dataset should be the KITTI dataset (Geiger et al., 2012),
which is one of the widely used datasets in computer vision
research and autonomous driving research. It provides raw
data collected by a Velodyne HDL-64E LiDAR, along with
two color and two grayscale PointGrey Flea2 video cam-
eras. This sensor setup effectively satisfies the requirements
of both visual SLAM and laser SLAM simultaneously. For
classic vehicular datasets, including Malaga (Blanco-
Claraco et al., 2014) and Complex Urban (Jeong et al.,
2019), the selection and arrangement of sensors tailored for
autonomous driving demonstrate exemplary design prin-
ciples in the context of such scenarios.

In the case of wheeled robots, several notable datasets,
such as NCLT (Carlevaris-Bianco et al., 2016), OpenLORIS
(Shi et al., 2020), Fusion Portable (Jiao et al., 2022), and
M2DGR (Yin et al., 2021), are equipped with a wide range
of sensors, including LiDARs and cameras. Fusion Portable
dataset (Jiao et al., 2022) incorporates the most recent sensor
technologies, such as event cameras. Although the variety
of sensors has significantly increased, the operational range
of wheeled robots remains confined to the ground. More-
over, a majority of these datasets primarily concentrate on
data collection within relatively small areas, such as uni-
versity campuses. Consequently, the coverage of SLAM
scenarios remains inadequate. Compared with the wheeled
robots, the payload capacity and moving range of handheld
devices (Helmberger et al., 2022; Zhang et al., 2021;
Ramezani et al., 2020) is even less, and hence these limi-
tations become more significant.

Furthermore, the moving range of ground vehicles and
handheld devices is usually constrained by road and terrain.
Specifically, the movement observed in these datasets often
lacks vertical translation and rapid rotation (especially for pitch
and roll). Therefore, some aerial datasets collected by unmanned
aerial vehicles (UAVs) are released, as summarized in Table 2.
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Due to the limited payload capacity of UAVs, most aerial
datasets are focused on visual and inertial sensors (Burri
et al., 2016; Sun et al., 2018; Majdik et al., 2017; Antonini
et al., 2018; Delmerico et al., 2019). The EuRoC dataset
(Burri et al., 2016) is an indoor UAV dataset for providing
visual-inertial localization algorithms on real flight data.
UPenn Fast Flight (Sun et al., 2018) aims to present visual-
inertial odometry for fast autonomous flight and a UAV

dataset with fast speed is released. As for the Zurich Urban
MAV dataset (Majdik et al., 2017), it offers comprehensive
real-world datasets in a city. The UZH-FPV dataset
(Delmerico et al., 2019) and Blackbird dataset (Antonini
et al., 2018) are aiming at providing UAV datasets with both
fast speed and agile trajectories. There are also datasets
providing valued data and algorithms for downward-
looking images from high altitudes like the CLOUD
dataset (Patel et al., 2020) and WildNav dataset (Gurgu
et al., 2022). Specifically, the CLOUD dataset (Patel et al.,
2020) provides a special large-scale dataset across various
environments with different light conditions, offering ex-
cellent support for aerial visual SLAM research.

Notably, NTU-VIRAL dataset (Nguyen et al., 2022)
and GRACO dataset (Zhu et al., 2023) have made pio-
neering contributions in presenting data of both LiDAR
and camera from aerial perspectives. However, certain
gaps persist in those datasets with LiDAR data, including
low altitude (below 40 m), lack of natural surroundings,
and small collection areas as they are all collected on
university campuses. At the same time, they only have
low-resolution grayscale images and lack of ground-
facing data. These gaps have prevented SLAM algo-
rithms from being tested on large-scale high-altitude
sequences that are commonly found in aerial mapping
applications. There are some datasets collected from
aerial vehicles with LiDAR data for environmental and
natural research purposes, including the HiWATER
dataset (Li et al., 2017), the DALES dataset (Varney and
Asari, 2020), and the 3DEP dataset (US Geological

Figure 1. Full view of the data collection device on DJI
M300 RTK. For SLAM data acquisition, the Livox Avia LiDAR
collects point cloud and IMU data while the Hikvision camera
collects RGB images. The LiDAR and camera are installed rigidly
on a board, which is then attached to the UAV via rubber-
damping balls. The U-Blox receiver and its antenna are set at the
top of the UAV to collect raw GNSS measurements. Regarding
ground truth data, the UAV’s built-in RTK provides position
ground truth with its antenna located on the UAV’s side. The DJI
L1, connected to the UAV through the gimbal, collects the
mapping ground truth.

Table 1. Comparison of related ground datasets.

Dataset

Sensors

Ground truth PlatformLiDAR Camera IMU (Hz)

KITTI (Geiger et al., 2012) Velodyne HDL-64E 1392 × 512
(RGB)

10 GPS/INS/RTK Car

1392 × 512
(gray)

Complex urban (Jeong et al., 2019) SICK LMS-151
Velodyne VLP-16

1280 × 560
(RGB)

200 GPS Car

OpenLORIS (Shi et al., 2020) Hokuyo UTM-30LX 848 × 480
(RGB)

400/250/
200/
62.5

MoCap Wheeled robot

848 × 800
(gray)

M2DGR (Yin et al., 2021) Velodyne VLP-32C 1280 × 1024
(RGB)

150 GPS/RTK/INS/
Total station

Wheeled robot

640 × 480
(RGB)

The newer college dataset
(Ramezani et al., 2020)

Ouster-64 848 × 480
(RGB)

650/100 6DOF ICP Handheld platform

The newer college dataset
extension (Zhang et al., 2021)

Ouster-128 720 × 540
(gray)

200/100 Laser/6DOF ICP Handheld platform

Hilti (Helmberger et al., 2022) Livox MID70
Ouster-64

720 × 540
(gray)

800/200/
100

Laser/MoCap/
Total station

Handheld platform

FusionPortable (Jiao et al., 2022) Ouster-128 1024 × 768
(RGB)

200 Laser/MoCap/
GPS/RTK

Handheld platform/Wheeled
robot/quadruped robot
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Survey, 2019). They only provide aerial mapping results
point cloud like terrain elevation maps instead of raw data
from the sensors, making them not suitable for SLAM
algorithm development.

Our dataset aims to address the above-mentioned gaps.
Specifically, unlike previous aerial SLAM datasets which
collect only visual-inertial data, including EuRoC (Burri
et al., 2016), UPenn Fast Flight (Sun et al., 2018), Zurich
Urban MAV dataset (Majdik et al., 2017), UZH-FPV
dataset (Delmerico et al., 2019), Blackbird dataset
(Antonini et al., 2018), CLOUD dataset (Patel et al., 2020),
and WildNav dataset (Gurgu et al., 2022), we collect
hardware-synchronized LiDAR, camera, IMU, and GNSS
data for multi-sensor fusion. Different from previous aerial
SLAM datasets which contain LiDAR data but were
collected in small-scale school campuses at low altitudes,
including NTU-VIRAL dataset (Nguyen et al., 2022) and
GRACO dataset (Zhu et al., 2023), our dataset includes
21 sequences, captured across a variety of environments
including an aero-model airfield, an island, a rural town,
and a valley at an altitude of higher than 80 m. In these
sequences, the established flight speeds range from 3 m/s
to 12 m/s, covering an area of from 94,000 m2 to
577,000 m2 in a single flight. Moreover, our sensor
package, configured for downward-looking orientation as
shown in Figure 2, imposes considerable challenges for
SLAM due to the downward-looking viewpoints and
large-scale diversified environments. Meanwhile, it holds
immense utility for applications such as aerial surveying
and mapping, particularly under high-altitude scanning
conditions. The distinctive features of our dataset, such as
the sensor setup, the higher flight altitudes, the use of a
downward-looking scanning method, and unique scenario
diversity, set this dataset apart from previous SLAM da-
tasets. Finally, when compared with datasets including the
HiWATER dataset (Li et al., 2017), the DALES dataset
(Varney and Asari, 2020), and the 3DEP dataset (US
Geological Survey, 2019), which are primarily collected
for non-SLAM researches, our dataset provides raw Li-
DAR, camera, IMU, and GNSS measurements as well as
position and mapping ground truth, which can be used for

developing and evaluating multi-sensor SLAM algo-
rithms. The complete setup will be described in the fol-
lowing section.

3. System overview

3.1. Sensor setup

A DJI M300 RTK quadrotor UAV1 is used to carry the
customized SLAM sensor suite, including a 3D LiDAR
(with built-in IMU), an RGB camera, and a GNSS receiver.
The DJI M300 RTK has its own RTK receiver to provide the
position only ground truth, and a high-precision aerial
mapping system (DJI L1) carried on a gimbal to provide
mapping ground truth. All the data from the 3D LiDAR, its
internal IMU, and RGB camera are hardware-synchronized
and timestamped by the Coordinated Universal Time
(UTC). The data from the sensors, except DJI L1, are
recorded by a DJI Manifold 2-C on-board computer running
with the Robot Operating System (ROS) to facilitate the use
of SLAM algorithms. The structure of the devices is shown
in Figures 1 and 2. All the Computer-Aided Design (CAD)
files of our mechanical design and the sensor drivers are
open-sourced on the Web site. A detailed description of the
sensors is listed below.

(i) 3D LiDAR In this work, a Livox Avia LiDAR2 is
placed vertically with its field of view (FoV) facing
the ground to collect aerial view data. It is a solid-state
3D LiDAR that operates in a triple-echo non-
repetitive scanning mode to obtain the highest den-
sity point cloud data at 10 Hz and 72,000 points per
frame. The detection range of the LiDAR is up to
190 m @10% reflectivity and 320 m @80% re-
flectivity in outdoor environments. The LiDAR is
connected to the computer through its supporting
accessories (Livox Hub). The LiDAR is hardware-
synchronized through the Pulse Per Second (PPS)
signal triggered by Global Positioning System (GPS).
All the point cloud data, including timestamps, the
ordinal number of echoes, and the reflectivity are
recorded in ROS bags.

(ii) IMU In this work, LiDAR’s internal IMU (BMI0883)
outputs angular rate and acceleration measurements at
a rate of 200 Hz. The BMI088 has a bias stability of
less than 2°/h and a low-temperature coefficient of
offset (TCO) below 15 mdps/K. The accelerometer
features a low TCO of 0.2 mg/K and low spectral
noise of 230 μg/sqrt (Hz). The data of the IMU is sent
to the on-board computer through the Livox Hub and
recorded in the ROS bags.

(iii) RGB Camera A Hikvision CA-050-11UC4 global-
shutter RGB camera equipped with a 5 mm lens is
placed under the UAV next to the LiDAR. The camera
is connected to the on-board computer by Universal
Serial Bus (USB) 3.0 port and is hardware-
synchronized with LiDAR and captures RGBFigure 2. Bottom view of the sensors.
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images at 10 Hz. All the camera data, including
images and timestamps, are recorded in the ROS bags.

(iv) Raw GNSS measurement Receiver The u-blox ZED-
F9P receiver5 is used to receive raw GNSS mea-
surements. The received data is transmitted to the on-
board computer via a serial port. All the collected data
is recorded in the ROS bags along with others.

(v) RTK Receiver The position ground truth provided by
the RTK receiver from the DJI M300 RTK UAV is
used for the dataset, achieving an accuracy of 1 cm +
1 ppm × D horizontally, and 1.5 cm + 1 ppm × D
vertically1 (D represents the distance between the
RTK receiver and the base station. During the data
collection of this dataset, the distance is lower than
5 km). The messages including the position infor-
mation obtained by RTK positioning, the number of
the GPS satellites, timing, signal quality, and other
relevant data are sent to the on-board computer at 5 Hz
by the DJI On-board Software Development Kit
(OSDK) connector and recorded in the ROS bags.

(vi) DJI L1 The DJI Zenmuse L16 is a high-precision
commercial aerial mapping system, designed for the
DJI M300 RTK UAV. The DJI L1 consists of a
LiDAR with triple-echo returns, a high-accuracy
IMU, and a 1-inch Complementary Metal-Oxide
Semiconductor (CMOS) sensor. The DJI L1 is
used on our dataset for simultaneous data acqui-
sition with the same orientation as our sensing
devices. The data of DJI L1 is post-processed by the
DJI Terra7 software, an advanced RTK-based aerial
mapping software for DJI L1, to obtain 3D point
clouds at high-accuracy of 10 cm horizontally and 5
cm vertically6 as a mapping ground truth for the
evaluation of SLAM algorithms.

3.2. Sensor calibration

In this dataset, the extrinsic parameters among the LiDAR,
the camera, the antenna phase centers of RTK and the raw
GNSS receiver are obtained from and released with the
CAD design files (see Figure 3). Meanwhile, since the
LiDAR’s internal IMU sensor we used is rigidly connected
to the LiDAR, the extrinsic parameter between the IMU and
the LiDAR is calibrated and obtained by the manufacturer
and is considered to be fixed during the data collection. The

intrinsic parameter of the camera is calibrated by the
chessboard method (Zhang, 2000). The extrinsic parameters
between LiDAR and the camera are critical for multi-sensor
fusion and point cloud colorization. Hence, to achieve a
more accurate extrinsic parameter than that provided by
CAD files, we also employed a targetless calibration method
developed by (Liu et al., 2022; Yuan et al., 2021) (see
Figure 4). Such a method is suitable for our proposed
scenarios where calibration is needed before each data
collection while the calibration target is not feasible to carry.
In each calibration, the initial extrinsic parameter is obtained
from the CAD model. As illustrated in Figure 4 (a)–(b), the
image edge features and LiDAR depth-continuous edge
features are extracted separately, then the extrinsic is op-
timized by minimizing the edge features’ re-projection
errors. Moreover, this method remains efficient where the
whole calibration completes within a minute while
achieving 0.1° and 1-cm-level of accuracy (see Figure 4 (d)–
(g)). Both the results of calibration using our method and the
raw data used for calibration are available on the dataset
Web site.

3.3. Time synchronization

This dataset uses the UAV’s on-board RTK for sensor
hardware synchronization. Specifically, the recom-
mended minimum specific GPS/Transit data (GPRMC)
received by the RTK receiver is transmitted from the DJI
OSDK connector to the on-board computer via serial
port. At the same time, the PPS signal received by the
RTK receiver is sent to an ATmega microchip, which is
set to hardware interrupt mode and has the capability to
generate synchronized 1-Hz and 10-Hz pulse signals as
shown in Figure 5. The 1-Hz pulse signal is sent to the
LiDAR in order to maintain GPS synchronization. Si-
multaneously, the corresponding GPRMC information is
sent to the on-board computer. The Livox ROS driver
combines the GPRMC information with the matched
point clouds triggered by the PPS signal and assigns their
timestamps. The 10-Hz pulse signal is sent to trigger the
camera for capturing images at a rate of 10 Hz and it also
uses the GPRMC to assign the timestamps. As the 10-Hz
point cloud message and the 200-Hz IMU message are
already synchronized internally by LiDAR itself, thus
the timestamp of the point cloud message, IMU message,
and image message are all aligned with the UTC time of
GPS. Finally, the raw GNSS receiver is also synchro-
nized with the UTC time of GPS.

3.4. Data format

The information contained within the ROS bag, along with
their corresponding message types and frequencies, are
listed in Table 3. As for the LiDAR sensor, it is important to
note that, in order to obtain raw data of the LiDAR, the
LiDAR’s ROS message type is CustomMsg, whose content
is defined by the LiDAR manufacturer (Livox). To balanceFigure 3. Relative positions and coordinates of sensors.
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image quality and file size for large scene data packets, the
camera’s image data message type is CompressedImage. To
ensure a high-quality evaluation of ground truth, infor-
mation regarding the RTK connection status, time-
synchronized trigger message sources, and GPS satellite
conditions have been recorded into the ROS bag as well. In
terms of the raw GNSS message receiver, to facilitate its
application in the field of SLAM, we also utilize the ROS
data format to record the receiver’s raw observational

information, including raw measurements, broadcast
ephemeris, GNSS solutions, and broadcast ionospheric
parameters. Among all ROS drivers, the LiDAR and RTK
receiver drivers employ their manufacturer-released ROS
drivers, while the camera and GNSS receiver ROS drivers
are open-sourced along with our dataset.

The data from theDJI L1was acquired using its own system
and saved directly onto its flash card. Both original data files
and reconstruction results including 3D point clouds processed

Figure 4. (a) Edge features correspondence matching. Blue edges are extracted from the image and the red edges are extracted from the
LiDAR point cloud. The green lines indicate that two features are matched. (b) LiDAR depth-continuous edges (white lines) are
extracted using adaptive voxelization. The LiDAR point cloud is first segmented into planes with adaptive sizes, then an edge feature is
extracted by the intersection of adjacent two planes. (c) CAD model of our camera-LiDAR sensor suite. (d)–(g) The calibration scene in
Armenia (d)–(e) and Hong Kong (f)–(g) and their corresponding colorized point clouds using the calibrated extrinsic parameters.

Figure 5. Diagrammatic illustration of the process involved in synchronizing the on-board sensor systems.
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by DJI Terra software (Version 3.6.7) are provided within this
dataset. The data types are listed as follows:

4. Dataset character

To increase the diversity of our dataset, we collected data
from four distinct scenarios. The data is organized into
five groups of sequences according to their scenarios and
characters, namely, HKairport, HKisland, AMtown,
AMvalley, and Featureless. Except for the Fea-
tureless sequence, data within a sequence is obtained
at three different cruising speeds while following the
same set of waypoints and a consistent altitude. Choosing
three different cruising speeds aims to create differenti-
ation in SLAM difficulty levels within the dataset. The
choice of altitude for each sequence is determined by the
specific scenario, ensuring that the altitude is suitable and
challenging. The path planning configuration is carefully
designed to make coordinated turns and maintain heading
along the route. The routes are continuous without pauses
at waypoints, ensuring that the trajectories are smooth
and the data is uniformly distributed. The trajectories can
also represent the flight patterns of both multi-rotor and
fixed-wing aircraft. This approach makes the data ap-
plicable to a wide range of situations. Additionally,

considering the initialization requirements of certain
algorithms, the UAV hovers at two positions before each
flight, one is at the 30 m altitude after take-off, and the
other is at the start position of the route. Detailed in-
formation about the path settings and ROS bags in each
sequence is presented in Table 4. A visualization and
illustration of waypoints related to our configuration for
each scenario are presented in Figure 6.

4.1. Aero-model airfield

The data sequences named HKairport and Feature-
less in this scenario are obtained from the Hong Kong
Model Engineering Club8 in Yuen Long, situated at
22.4164°N, 114.0428°E, Hong Kong, China. The scenario
features an outdoor 20-m by 200-m concrete runway des-
ignated for aero-model aircraft operation, as well as an 800-
square-meter concrete helipad reserved for flying model
helicopters, with the total surveyed area surpassing
154,000 square meters. During the acquisition of this
scenario, the UAV maintained a consistent altitude of 80 m.
The large site presented considerable challenges for LiDAR
SLAM. Throughout the data collection process, the GNSS
base station for high-accuracy RTK positioning provided by
the Hong Kong government9 is employed. The flight ve-
locities of the HKairport sequence are set to 3 m/s, 6 m/s,
and 9 m/s.

For the data sequence named Featureless, after
flying the established flight trajectory, which is the same as
that used above in the HKairport sequence, with a speed
of 6 m/s and altitude of 80 m, we further incorporated a
slightly low altitude (20 m) manual flight over the runway
to create scenarios where LiDAR is degenerated and is

Table 3. Message information of sensors and devices. A dash (“-”) signifies that there is no fixed frequency for these messages.

Type Topic name Message type Rate (Hz)

Ground truth: /dji_osdk_ros/rtk_connection_status std_msgs/UInt8 5
/dji_osdk_ros/rtk_info_position std_msgs/UInt8 5
/dji_osdk_ros/rtk_info_yaw std_msgs/UInt8 5
/dji_osdk_ros/rtk_position sensor_msgs/NavSatFix 5
/dji_osdk_ros/rtk_velocity geometry_msgs/Vector3Stamped 5
/dji_osdk_ros/rtk_yaw std_msgs/Int16 5
/dji_osdk_ros/time_sync_fc_time_utc dji_osdk_ros/FCTimeInUTC 1
/dji_osdk_ros/time_sync_gps_utc dji_osdk_ros/GPSUTC 1
/dji_osdk_ros/time_sync_nmea_msg nmea_msgs/Sentence 25
/dji_osdk_ros/time_sync_pps_source std_msgs/String 1

Camera: /left_camera/image/compressed sensor_msgs/CompressedImage 10
IMU: /livox/imu sensor_msgs/Imu 200
LiDAR: /livox/lidar livox_ros_driver/CustomMsg 10
GNSS: /ublox_driver/ephem gnss_comm/GnssEphemMsg -

/ublox_driver/glo_ephem gnss_comm/GnssGloEphemMsg -
/ublox_driver/iono_params gnss_comm/StampedFloat64Array -
/ublox_driver/range_meas gnss_comm/GnssMeasMsg 10
/ublox_driver/receiver_lla sensor_msgs/NavSatFix 10
/ublox_driver/receiver_pvt gnss_comm/GnssPVTSolnMsg 10
/ublox_driver/time_pulse_info gnss_comm/GnssTimePulseInfoMsg 1
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texture-less that allows users to test their GNSS fusion SLAM
algorithms (see Table 4, Seq. Featureless_GNSS01-
03).

4.2. Island

The data sequence in this scenario named HKisland is
collected on Kai Pei Chau in Cape D’Aguilar situated at
22.2057°N, 114.2597°E, Hong Kong, China. The site
comprises a large island measuring approximately 243 m
by 147 m and a smaller island measuring approximately
150 m by 109 m, with a survey area exceeding
94,000 square meters. During the acquisition of this
scenario, the UAV’s altitude remained at a constant 90 m.
Collecting data in this area posed significant challenges
for both LiDAR SLAM and visual SLAM due to the
flight route passing over the sea and the varying height of
the island. Besides, the change of the wind speed above
sea brings larger attitude changes to the aircraft. The data
collection process utilized the GNSS base station pro-
vided by the Hong Kong government and the flight
speeds are set to 3 m/s, 6 m/s, and 9 m/s as well.

4.3. Rural town

The data sequence in this scenario named AMtown is obtained
from Urtsadzor, situated at 39.9218°N and 44.8229°E, within
the Ararat province of Armenia. This particular sequence

encompasses a diminutive village spanning approximately
859 m by 464 m, resulting in a surveyed expanse surpassing
411,000 square meters. During the acquisition of this scenario,
the UAV’s altitude remained at a constant 80 m. During data
acquisition, the DJI D-RTK210Mobile GNSS Station is used as
the RTK base station, and flight velocities are set to 4 m/s, 8 m/
s, and 12 m/s.

4.4. Valley

The data collected in this scenario named AMvalley is
acquired from Azizken Forest, situated at 39.9486°N and
44.8735°E, in the Ararat province of Armenia. The valley
area has approximate dimensions of 932 m by 470 m, re-
sulting in a surveyed area that exceeds 577,000 square
meters. During the acquisition of this scenario, the UAV’s
altitude remained at a constant 130 m from the take-off
point. The topographic undulations of the valley present a
significant challenge for SLAM algorithms. Throughout the
process, the DJI D-RTK2 Mobile GNSS Station is used as
the RTK base station, and flight velocities are also set to 4m/
s, 8 m/s, and 12 m/s.

5. Data validation

For the purpose of data evaluation, we utilized several state-
of-the-art multi-sensor fusion algorithms to test our data.
The evaluative metric employed was the Root Mean Square
Error (RMSE) of Absolute Trajectory Error (ATE), which

Table 4. Features of each scenario. The ROS bags are organized into sequences according to their scenarios and characters.
HKairport, HKisland, AMtown, AMvalley, and featureless sequences are collected, respectively, in the aero-model airfield in
Hong Kong, an island in Hong Kong, a rural town in Armenia, a valley in Armenia. Those sequences with GNSS suffix are containing raw
GNSS measurements. A dash (“-”) signifies that only manual flights are conducted in this data collection.

Sequence Cruising altitude (m) Cruising speed (m/s) Path length (km)

HKairport01 80 3 2.040
HKairport02 80 6
HKairport03 80 9
HKairport_GNSS01 80 3
HKairport_GNSS02 80 6
HKairport_GNSS03 80 9
HKisland01 90 3 1.846
HKisland02 90 6
HKisland03 90 9
HKisland_GNSS01 90 3
HKisland_GNSS02 90 6
HKisland_GNSS03 90 9
AMtown01 80 4 5.109
AMtown02 80 8
AMtown03 80 12
AMvalley01 130 4 4.304
AMvalley02 130 8
AMvalley03 130 12
Featureless_GNSS01 80 6 6.690
Featureless_GNSS02 80 6 2.456
Featureless_GNSS03 - - 7.148
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was determined by comparing the position trajectories
yielded from the multi-sensor fusion algorithms to the RTK
position ground truth encapsulated within the dataset. In
order to evaluate the results with respect to the trajectories,
the ATE drift [%] is calculated by dividing the RMSE of
ATE by the length of the flight path (see Table 4). Our
choice of multi-sensor fusion algorithms encompassed of
different sensor combinations, inclusive of LiDAR-inertial
methods (LIO-Livox11, FAST-LIO2 (Xu et al., 2022)),
LiDAR-visual-inertial method (R3LIVE (Lin and Zhang,
2022)), visual-inertial method (ORB-SLAM3 (Campos
et al., 2021)), and GNSS-visual-inertial method (G-VINS
(Cao et al., 2022)) to validate the dataset.

Additionally, we conducted trials using LIO-SAM (Shan
et al., 2020) and LiLi-OM (Li et al., 2021); however, these were
not incorporated into the final results due to their incompati-
bility with our data. Specifically, LIO-SAM demonstrated in-
adequate support for solid-state LiDARs, as per the original
authors’ comments, and LiLi-OM proved unsuitable for our

downward-looking data, leading to rapid failure during testing.
For all evaluations, we adhered to the default setting for each
method. In the alignment of predicted trajectories with the
ground truth, the evo tool (Schubert et al., 2018) was employed
to produce the ATE results.

The ATE and its drift results are presented in Table 5. The
point clouds generated by the algorithms can be seen in
Figure 6. LIO-Livox performed well in low-speed scenarios
but tended to fail in scenarios involving high-speed or
LiDAR degradation. FAST-LIO2 showed robustness across
various scenarios but performed suboptimally in those
featuring LiDAR degradation, owing to its exclusive use of
LiDAR and IMU. R3LIVE demonstrated a distinct im-
provement over FAST-LIO2 in some scenarios involving
LiDAR degradation (e.g., AMvalley01 and AMval-
ley02). As for ORB-SLAM3, we utilized its Monocular-
Inertial mode with loop closure to validate our data. As
shown in Table 5, ORB-SLAM3 is working well on slow
flights, the accuracy of ORB-SLAM3 is lower than

Figure 6. Figures (a)–(d) correspondingly represent the contents of the four distinct scenarios, namely, aero-model airfield, island, rural
town, and valley. Each scenario is depicted via a collection of images, which include: a satellite map view with the flight plan route and
its dimensions, a height-colored reconstruction result of the FAST-LIO2 (Xu et al., 2022) algorithm, an RGB-colored reconstruction
result of the R3LIVE (Lin and Zhang, 2022) algorithm, and ground truth maps reconstructed by DJI L1 and color-rendered through RGB.
The left columns show full-view images, while the right columns display corresponding zoomed-in detail images.
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algorithms that use LiDAR-IMU odometry, especially on
the z axis. Figures 7 and 8 present illustrative results on the
HKairport_GNSS01 scenario.

We utilized G-VINS to validate the data including raw
GNSS measurement. As for Featureless sequences,
all selected algorithms, including LIO-Livox, FAST-LIO2,
ORB-SLAM3, and R3LIVE, failed due to the low altitude

(20 m) manual flight causing LiDAR and visual degener-
ations. G-VINS exhibited reliable performance at the start-
up of the Featureless bags, achieving ATE of 1.73 m,
2.78 m, and 2.54 m for Featureless_GNSS01, Fea-
tureless_GNSS02, and Featureless_GNSS03,
respectively. Nevertheless, G-VINS fails on all Fea-
tureless sequences when the UAV starts to make
rapid turns, which causes rapid changes in the FoV that
can hardly be tracked. For the normal trajectory including
raw GNSS measurement, G-VINS works well on
HKairport_GNSS01, achieving ATE of 3.39 m and
drift of 0.166% (see G-VINS results in Figures 7 and 8).
As for other datasets in HKairport_GNSS sequence
which are collected at 6 m/s and 9 m/s, G-VINS per-
formed similar to the Featureless sequence, expe-
riencing a reliable performance at the start-up of the
GNSS bags but soon fails at rapid turns. As for the da-
tasets in HKisland_GNSS sequence, all G-VINS tests
fail when UAV is flying over the sea where no stationary
salient visual features can be tracked (due to the sea wave
moving). Despite this, the raw GNSS measurements and
camera data in this sequence were effectively validated
through the results, as G-VINS was successfully initiated
and operated.

6. Challenges and limitations

To mitigate the effects of high-frequency vibrations on the
LiDAR, its internal IMU, and camera, rubber-damping balls
are employed as a mounting method between the three
sensors and the UAV in our system. This approach

Table 5. The RMSE of ATE and its drift results of the multi-sensor algorithms as applied to the MARS-LVIG dataset. The optimal
odometry outcome for each bag is emphasized in bold typeface. A dash (“-”) signifies the failure of the algorithm’s execution. The drift is
calculated by dividing the RMSE of ATE by the length of the flight path.

Sequence

LIO-Livox FAST-LIO2 R3LIVE ORB-SLAM3

ATE (m) Drift [%] ATE (m) Drift [%] ATE (m) Drift [%] ATE (m) Drift [%]

HKairport01 0.65 0.032 0.66 0.032 0.68 0.033 3.86 0.189
HKairport02 123.39 6.049 1.14 0.056 0.82 0.040 9.39 0.460
HKairport03 133.05 6.622 1.81 0.089 1.12 0.055 - -
HKairport_GNSS01 0.62 0.030 0.61 0.030 0.53 0.026 3.35 0.164
HKairport_GNSS02 2.97 0.145 2.99 0.146 2.98 0.146 - -
HKairport_GNSS03 - - 1.00 0.050 1.41 0.060 - -
HKisland01 0.75 0.041 0.64 0.034 0.70 0.037 1.06 0.057
HKisland02 2.20 0.119 2.13 0.115 2.10 0.113 - -
HKisland03 - - 2.16 0.117 3.93 0.212 - -
HKisland_GNSS01 2.18 0.118 2.01 0.108 2.02 0.109 3.33 0.180
HKisland_GNSS02 3.26 0.177 2.18 0.118 2.11 0.114 29.73 1.610
HKisland_GNSS03 - - 4.18 0.226 3.68 0.199 - -
AMtown01 1.92 0.038 2.28 0.045 1.44 0.028 93.53 1.830
AMtown02 21.95 0.429 3.24 0.063 2.10 0.041 - -
AMtown03 - - 2.93 0.057 - - - -
AMvalley01 12.28 0.285 4.54 0.105 3.82 0.088 32.14 0.746
AMvalley02 - - 8.12 0.188 4.47 0.103 50.21 1.160
AMvalley03 - - 8.21 0.191 - - - -

Figure 7. Top view of the trajectories generated by RTK position
ground truth, GPS (without RTK) position, and five algorithm-
estimated positions of HKairport_GNSS01 sequence,
respectively.
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effectively reduces IMU noise and eliminates image blur.
However, it may introduce errors in the relative position
between the sensors and the RTK antenna phase center,
which results in potential errors between the estimated
position and the ground truth. To assess this error, we
utilized the VICON12 motion capture system. By fixing the
UAVon the ground and applying forces to the board where
the sensors are installed, we induced the maximum incli-
nation of the sensors. Upon observing that the maximum
displacement of the sensor unit is less than 1.5 cm, we can
confirm that the impact of the rubber-damping balls on the
error of the relative position is very small. Considering the
UAV flight altitude, the points measured by the LiDAR are
tens of meters away, and the error caused by the 1.5 cm
offset (e.g., re-projection to the camera plane) is substan-
tially small (e.g., less than 1 pixel) and can be ignored.

During the data collection process, due to the large scene
size and significant variations in environmental illumina-
tion, we utilize the camera’s built-in auto-exposure feature
to ensure high image quality. Yet, the camera message does
not provide the exposure time. Fixing the camera exposure
time will cause image overexposure or underexposure,
thereby imposing significant challenges for both SLAM and
point cloud coloring algorithms. After carefully considering
the satisfactory results obtained during our validation
process, we believe that the impact of exposure variations
on the visual SLAM system is acceptable.

7. Conclusion and future work

In this paper, we have presented a comprehensive high-
altitude downward-looking dataset that combines the use of
a solid-state LiDAR, a global-shutter RGB camera, a raw
message receiver of GNSS, and an advanced UAV platform.
We collect data in diverse large outdoor environments at a
high altitude, aiming to address the absence of high-altitude
data and outdoor scenes in existing aerial SLAM datasets,
which would pose additional challenges to current SLAM
algorithms.

Our future work will be driven by the challenges found in
this dataset, we aspire to develop robust SLAM algorithms
capable of overcoming these challenges in future research.
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